Copyright Notice

The following manuscript
EWD 227: Stepwise program construction
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 1-14 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

EWD227

My dear Friend or Relation, Master, Colleague or Pupil,

Paraphrasing the ominous sentence: "This has been placed here
for your convenience.", which is usually used to explain the presence of all
sorts of American hotel room contraptions, I should like to say "The enclosed
manuscript has been sent to you for your enjoyment.™.

I would not dare to send it to you if you regarded it as the next item
for the evergrowing pile of tasks still to be done. I know that the manuscript
is long but I have let it grow that way in the hope that the intellectual
effort needed for its digestion is inversionally proportional to its length.
And your enjoyment may be praportional to it. So I don't apologize for its
length. *)

There are no shattering discoveries in it: it is the kind of peaceful
prouse that I write (mainly for my own distraction?) when a somewhat poor
condition forces me for some period of time to some sort of inactivity. It
will certainly be less gloomy than this evening's front page news!

When you have read it and feel like dropping me a line, please don't
hesitate to do so; I will receive it gladly.

Yours sincerely

Edsger W.Dijkstra

Department of Mathematics
Technological University Eindhoven
P.0. Box 513

EINDHOVEN

The Netherlands

*) There is no point in denying it: 1 do like Franz Schubert's music.

../transcriptions/EWD02xx/EWD227.html

EwDe27 - 0

Stepwise Program Construction.

Over the past years] have been (heavily) engaged in a number of {at that
time) advanced programming projects that could be considered as large in comparisan
to the available manpower. I am still in the active process of learning from
the experience gained, one of the immediate goals of this learning process
being the discovery of better ways to construct even "small programs" in a
reliable fashion. Although large, advanced and sophisticated programming efforts
are more spectacular, we must not forget that quite a 1ot of machine time and
programmer's enerqy is really spent on small, down-to-earth projects and the
present efforts to make computing facilities more directly accessible far the

irdividual user will only reinforce this tendency.

For the interested reader I am going to make twoe programs and, besides
that, I am going to show the individual steps in which they have been constructed,
The' examples serve to illustrate parts of my present understanding af the

demands, that the task of programming mgkes upon the human mipd.

In my approach there are some central themes that I shall just mention
for the proper understanding of the fallowing. The one theme is that, although
the program made by the programmer is his finasl product, the computations
evoked by it are the true subject matter of his trade: he has ta guarantee that
the computations -the "making" of which he leaves to the machine- evoked by
his program will have the desired effect. As a result he has the duty to structure
his program in a useful way, where usefulness (among ather things) implies that
the form of the program admits trustworthy statements about the caresponding
computations. The second theme is that the mental aids available to the human
programmer are, in fact, very few, They are enumeration, mathematical induction
and abstraction, where the appeal to enumeration has to satisfy the severe
boundary condition that the number of cases to be considered separatsly, should
be very, very small, The introduction of suitable abstractions is our anly'
mental aid to reduce the appeal to enumeration, to organize and master complexity.
Mathematical induction has been mentioned explicitly because it is the
appropriate (and Dnly!) established pattern of reasoning by which we can under-
stand programs with either repetitive clauses or recursive procedures. As a

corollary I mention the fact that for some time 1 knew that as a programmer I

EwD227 - 1

could live quite happily without any form of go to statements but that in the
mean time my considered opinion is that I cannot live happily with the go to

statement.

7o avoid misunderstanding I should like to stats explicitly that I do not
claim that the two programs produced are the best possible, measured (prnbably!)
in terms of your private yard-stick. I do claim that they are fairly good and
reasonable in terms af the average yard-stick, i.e. that they present utterly
realistic solutions. I do claim to have achieved a degree of clarity and trans-
parency of an order of magnitude better than the average programmer's selution,
that my solutions have been reached with an intellectual effort considerably
below average and that they admit exhaustive verification. And that is more

thar can be said ahaut many a program.

The reason to treat two examples is because they have been drawn from
vastly different fields: the one dealing with prime numbers is a so-called
scientific application, the other, dealing with the idiosynchrasies of
Flexowriters, is a so-called clerical application. These two fields are aften
regarded as completely fareign to each other: the succesful application of the
same discipline as illustrated belaow gives a strong support to the assumption
that the difference between scientific and clerical machine usage is by no
means an inherent difference, but more probably the result of a difference in
intellectual level and professiocnal training of the psople engaged.

(Note. I do not feel myself called to justify the choice of my examples,
which are a kind of random draws from what is happening axound me: emotionally

speaking, prime numbers leave me as unaffected as Flexowriters.)

The construction of a table af the first 1000 prime numbers.

"Given an integer array p[1:1000], make a program making its elements
in order of increasing subscript value equal to the suceessive prime numbers,

where 2 is considered as the first prime number,"

Well-defined as this task may seem to the benevolent reader, as we go
alang we shall discover an undefined boundary between the amount of mathematical

knowledge the programmer is willing to embody in his program and the amounrt af

EwD227 - 2

computation he leaves to the machine.

To start with: for the task to make sense it must be known that at least
1000 primes actually exist. We grant the programmer this knowledge and at a
certain stage of program construction we allow him to appeal to this fact when

ke has to prove that his Program does indeed halt.

We shall now give the coarsest version af the program, viz.
version O:

begin"assign to the array p the prime table as described" end

When this action occurs among the well-understood and well-defined
repertoire of actions fraom which the camputation has to he composed, version O
solves our problem. For the sake of argument we now assume that this action does
b0t occur amang the repertaire; particularly we restrict ourselves to reper-
toires in which we can operate on arrays only element wige. This implies that
in our next version the order in which the elements of the array p will get
their desired value has to be expressed and in it we shall try to express just

that and preferably nothing mare.

An obvious version of the pragram then starts with
begin p[1]:= 2; p[2]:= 3; p(3]:= s5; P[4J== 73 p[SJ:: Myeeneii.s,
implying that the programmer's knowledge includes a table of the first 1000
primes. We shall not pursue this version, as it would imply that the pragrammer

hardly needed the machine at all.

The first prime number being given (:2), the thousandst being assumed
unknown to the brngrammer, the most natural order to fill the elements of the
array p is in order of increasing subscript value and if We express just that
{with a simple repetitive while do clause) we come to
version la:
begin integer k,j; k:= 1; ji= 1

while k < 1000 do
begin "increase j until the next prime number';
p[k]:: Ji ki= k + 1

-1n]

EwD227 - 3

Identifying k as the subscript value of the element whose turn it is to
be filled the correctness of version la is easily proved by mathematical
induction (under the assumption of the existence of a sufficient number of
primes).

Version 1a is a perfect program when the operation described by "increase
j until the next prime numbeg" bccurs among the repertoire, but let us suppose
that it does not. In that case we have to express how J is inereased and in
our next elaboration we shall try to express just that and preferably nothing
more. With a simple repetitive repeat until clause (which may act upon a sequence
of statements) we come for "increase j until the next prime number" to

version 2a:

begin boolean jprime;

repeat j:= j + 1; "give to jprime the meaning: j is s prime numbez"
epeat g9 J g

until jprime

|

If we substitute version 2a for the appropriate operation in versien 1a our
resulting program is undoubtedly correct. But if we assume that the programmer
knows that, apart from 2, all prime numbers ars odd, then we may expect that
he will be dissatisfied with the obvious inefficiency of version 2a. The price
to be paid for this, call it "lack of clairvoyance" is a revision of version 1a,
in which the prime number 2 is dealt with separately, afier which the cycle can
deal with the odg primes. So we came to
version 1hb:
bggin integer k,j; p[1]:= 2; k 1= 2; ji= 1,

while k < 1000 do
beqgin "iécrease odd j until the next odd prime numbser'";
p[k]:: Ji k= k + 1

end

where the analogous elaboration aof the operation between quotes leads to
version 2b:
begin boolean jprime;

repeat ji= j + 2;

"give to jprime for odd j the meaning: j is a prime number"

until jprime

EWD227 - 4

The above oscillatian between versions 1 and versions 2 is in fact nothing
else but moving the interface between the overall structure and the primitive
that has to fit in this structure, This is definitely rot attractive, but with
8 sufficient lack of clairvoyance and being forced to take our decisions in
sequence, I see no other way: we can regard our efforts as experiments to explore

where the interface can be maost conveniently chasen.

Encouraged by the success of treating 2 apart, we investigate what can be
gained by treating 3 apart as well. For this purpose we introduce the property
"throdd", i.e. neither divisible by 2, nor by 3. The throdd numbers are of
the form 6&N+1 or 6N+5, By definition, 2 and 3 are the only prime numbers not
contained in the set of throdd numbefs and so we come to
version 1c:
begin integer k,j; p[1]:= 2; p[2]:= 3; ki=3; ji=1;

while k < 1000 do
begin "increase throdd j until the next throdd prime number";
plklt= j; ki= k + 1

where the analogous elaboration of the operation between quotes leads to
version 2c:
begin boolean jprime;
repeat "increase throdd j until the next throdd value™;
Lepeat
"give to jprime for throdd j ths meaning: j is a prime number"

until jprime

i
3

This is only an improvement, when the operation "increasse throdd J umtil
the next throdd value" is easily implemented. The Proper increase of j is.a
function of j: call it "INC(j)". Its value is =4 when j=6N+1, its value ig =2
when j=6N+5. Instead of freshly evaluating the function INC(j)} whenaver we
need it, we introduce a separate variable, ine say, to record the current value
of INE(j), cerresponding to the curremt value of Jj+ The variable inc has to

be set initially when j is set, it has to be adjusted whenasver the value of J

EWD227 - 5

is changed. (The introduction of inc is an instance of 2 standard pragrammer's
device to trade variable space for computation speed,) Using list-assignments
to stress that inc is just a companion of j, the introduction of inc and the
elaboration of "increase throdd j until the next thradd value™ leads to
version 1d:
begin integer k,j,inc; p[1]:= 2; pl2]:= 3; Kki= 3;

(j,inc)i= (1,4);

while k < 1000 do

begin "increasp throdd j, adjustmant of inc included, until the next

throdd prime number";

p[k]:: Ji k= k + 1

where the elaboration of the operation between quotes leads to
versjon 2d:

begin boolean jprime;

repeat (j,inc):= {(j + inc, 6 ~ ine);
"give to jprime for throdd j the meaning: j is a prime number"

until jprime

m
3
jul

There is no indication that any gain will result from taking the next

prime (i.e. 5) out of the cycle as well and we shall not try it.

Again, when "give to jprime for throdd j the meaning: j is & prime number"
is an operation from the Presupposed repesrtoire, them our pProgram is finished.
We now assume £hat it is not, in other wards we have to evoke a computation
deciding whether a given throdd j has a factor. It is only at this stage that
the algebra really enters the picture. Here we make use of the knowledge that
we anly need to try prime numbers as factors; furthermore we shall use that
the prime numbers to be tried can already be found in the filled portion of

the array p.

We use the facts that

a) J being a throdd value, the smallest potential factor to be tried is

EWD227 - 6

p[3], i.e. the first prime above b¥:
b) the largest prime factor we have to try is p[nrd-1], when p[ord] is the

smallest prime number whose square exceeds j.

If this set is not empty, we have a chance of finding a facter and as saon
as a factor has been found, the investigation of this particular j value can be
stopped. We have to decide in which order the prime numbers from the set will
be tried and we shall do so in order of increasing magnitude because the

smaller a prime numher the larger the probability of its being a factor of j.

In our first elaboratien of "give to jprime for throdd j the meaning:
j is a prime number" we come to
version 3d:

begin integer n,ord; boolean nofactorfound;

ord:= 1; while p[ord]lE < J do ord:= ord + 1;

n:= 3; nofactorfound:= true;

while n < ord and nofactorfound do

begin "give to nofactorfound the meaning: p[n] is no factor of i™;
ni= n + 1

nd;

@

jprime := nofactorfound

Here we make two observations. The boolsan variable called "nofactorfound"
is superfluous, we could have used jprime instead, so that the last assignment
statement can be removed. Furthermore, ord is a function of J that we need not
recompute freshly every time, but that we can and should treat along the =ame
line as inc. The latter remark causes the final revision of version 1, leading
to version 1e:
begin integer k,j,inc,ord; p[1]:= 2; p[2]:= 3; k:= 3

(j,inc,ord):: (1.4,1);

while k < 1000 do

begin "increase throdd j, adjustment of ine and ord included, until
the next throdd prime number";

p[k]:: Ji ki= k + 1

EWD227 - 7

where the elabaration of the operation between quaotes leads to
version 2e:
begin boolean jprime;)
repeat (j,inc):= (j + inc, 6 - ipe);
while p[ord]12 < Jj do ord:= ord + 1;
"give for throdd j, using p and ord, to jprime the meaning:
j is a prime number"
until jprime

end

(Remark: here "while p[ord]T.? < j do" can be replaced hy "if p[ord]?? < Jj then",
but to my taste the margiral gain in efficiency is not worth the intellectual
effort to prove its validity. A programmer should learn to be lazy at the right

moment and to let the principle "Safety First" prevail!)

Elaboration of the operaticn between quotes gives a variant of version 2d,
viz, version 3e:
begin integer n; n:= 3; jprime:= true;
while n < ord and jprime do
begin "give to jprime the meaning: p[n] is no facter of i
nt=n + 1

end

For "give to jprime the meaning: p[n] is no factor of i" we may write

under the assumption of decent real arithmetic

begin xeal q; qi= j / p[n]; jprime := (antier(q) # q) end ;

we shall assume the availability of the integer division and write

version 4e:

jprime := (§ £ (j 4 p[n]) *p[n])

Finally we perform all substitutions to construct a single statement.

EWD227 - 8

begin integer k,j,inc, ord; p[1]:= 2; p[Z]:: 3; ki= 3;
(j,inc,ord):: (1,4,1);
while k < 1000 do
begin begin boolean jprime;
repeat (j,inc):: (j + inc, 6 - inc);
while plord]12 < j do ordi= ord + 1;
begin integer n;
ni= 3; jprime:= true;
while n < grd and jprime do
begin jprime:=(j £(j +p[n])* p[n));

ni=n + 1

o
3
o

end
until jprime

end;

We could have made the inner blocks inta compound statements by moving
the declarations for jprime and n to the outside. We have not done so: clarity
does not gain by it and whether there is a point in doing it is rather dependent

on the implementation.

And thus ends the treatment of the first example.

The unigue reporting of the printed page as produced on a Flexowriter,

For our purpeoss we can regard a Flexowriter as a kind of electric typewriter
which is operated only via the keys of its keyboard. Whenever a key is pressed,
a8 configuration characteristic for this key is punched in a paper tape which is
then moved on over one position., Typing a page thus implies the production of a
paper tape specifying what has been typed. (Indeed: besides the punching station
the Flexowriter has also a reading statian, from which the printing mechanism
can be controlled. By inserting the paper tape just produced into the reading

station one c¢an obtain another copy of the printed page.)

EWD227 - 9

We want to program a routine which reads such a paper tape and gives, when
called repeatedly, a unique description of the corespending page image, according
to conventions to be described below. As we go along we shall see that this isg
no trivial matter, because (mainly due to the construction of the Flexowriter)
the very same Page images may corespond to many paper tapes, greatly varying
among each other. (In our example we shall simplify the real situation slightly:
we shall exclude the unexpected occurrence of "end of tape" and exclude the
situation that the paper tape reader of the computer discovers ~due to some
error in punching or reading- an illegal configuration., Even thus simplified,

the preoblem is messy and intricate enough to serve our purpusel)

Two remarks about the form in which we shall present our solutian:
1) the routine will be coded as an operator, operating in a local universe
of permanently existing vaeriables; we shall use small letters for their identi-
fiers,
2) constants, referring to the integer values associated with characters will

be denoted by identifiers composed from capital letters.

In its coarsest farm the local universe contains one integer variable,
called "charf" and the operator can bs described by
version 0O:
begin "assign to charf the next value" end

Our Flexowriter has equal spacing, i.e. each line has a fixed number of
print positions. There is a finite number of so-called "position characters"
(this thanks to the absence of a backspace key on our Flexowriters, that would
allow a practically unlimited number af auperpusitions) and each position
character can aﬁcur at each print position of the page. A numerical code for
the position characters has been chosen and the operator reports by assigning
to charf the numerical value associated with the position character in the
current print position, dealing with the print positions in sach line in order

from left to right and with the lines in order from top to bottom.

With respect to the left margin we assume that its pasition on the printed
page is given; to indicaste the right hand end of a line we have extended the

range of charf values with an additional one, denoted by "RET" (i.e. New Line,

EWD227 - 10

Carriage Return) and require for the sake of unigueness that all "invisible"
spaces at the right hand end of a lire are suppressed. It is as if RET is counted
among the visible position characters but that its (symbolic) printing positiaon

has to be aligned to the left as far as possible.

It is the purpose of version 1 to suppress any spaces at the right hand end
of each line; for its benefit the local universe has been extended with two
integer variables;
charfi: the range of this variable equals that of charf, but in the time
sequence of its values invisible Spaces at the right hand end of
each line will still occur (if present, of course)

stock: this is & counter; its value equals the number of times that
charf can be filled with a next value, before charfl has to be

refilled. It reguires the initial setting "stock:= QM.

Version ! implements the logk ahead whensver via charfl one Or more spaces
are reported; when followed by RET they have to be suppressed, otherwise they
have to be transmitted.
verien:
begin if stock = 0 then

begin repeat "assign to charf! the next value";
stock:= stock + 1
until charf! £ SPACE;
if charfl = RET then stock := 1
and;

charf::(iﬁ stock > 1 then SPACE else charf1); stock:= stock - 1

wm
o |
o

Our next complication is that the "position character" as reported in
charf! (with the exception of RET) may be composed of three parts: by means
of the mechanism of a so-called non-escaping key (i.e. one that leaves the
carriage position as it is) ane can Superpose various "key characters” im the
game print peosition. We have in fact two such key characters, viz. underlining
and a vertical stroke. It is the purpose of version2 (an elaboration of "assign
to charfl the next value") to combine the key characters referring to the

same print position.

Ewp227 - 11

We have to take into account
1) that non-escaping key characters have to be combined with the first
following escaping key character
2) that repetitian of the same non-escaping key character in the same print

position must be considered as equivalent to its single occurrence.

For the benefit of version2 we extend the local universe with one integer
variable,
charf2: the range of this variable covers those charf values coresponding
to position characters, produced without non-escaping key characters

Plus the values denated by UNDER and STROKE.

As a matter of fact, O = charf2 < 127 will be satisfied; the presence of
underlining will be coded in charf! by an increase of 128, that of a stroke

by an increase of 256.

Our tentative elaboration of "assign to charf! the next value" gives rise
to version? (here CRAZY2 denotes 8 constant value well beyond the range of
charfE)
version2;

begin integer under, stroke;

under:= O; stroke:= Q; charfi:= CRAZYZ;
Iepeat "assign to charf? the next value";
if charf2 = UNDER then under:= 128
else
if charf2 = STROKE then stroke:= 256

else

charfl:= charf?
until charfl £ CRAZYZ;

charfli= charf! + under + stroke

We have said "tentative elaboration", because as it stands, this version
will not prevent, say, the transmission of an underlined RET: "charf2 = UNDER"

follawed by "charf2 = RET" requires the insertion of an additional space to be

EwD227 ~ 12

underlined. As pure spaces (i.e. without underlining or strnke) preceding RET
will be suppressed by version 1 anyhow, we can (and shall) remedy this situation
By imposing upon "assign to charf? the next value" the requirement that it

will never transmit RET unless immediately preceded by a transmission of SPACE.

The next complicatjon is that our Flexowriters are equipped with a tabulator
key TAB which, when pressed, gives rise ta a punching in the paper tape, while
the carriage moves on until the next tabulator stop that is more than one .
position to the right of the current pasition: the carriage moves aver.at least
two positiens, The positions of the tabulator stops are standardized (unca BVELY
eight positions) but it implies that the algorithm deriving the number of spaces
coresponding to TAB must be aware of the current positien of the carriage (at
least modulo 8}, It is the purpose of version3 -the elaboration of "assign to
charf2 the next value"- to translate tabulations into the equivalent number

of spaces and to insert a SPACE before RET.

For its benefit we introduce into the local universe three integer variables.
charf?: the range of this variable is that of charf2, extended with TAB;
pos: keeps track of the current carriage position; when “charf3 = RET"
occurs it will be set to zero, when "charf3 = TAB" occurs it will
be increased until the proper multiple of 8 ete. It requires an
initial setting, say "pos:i= O".

substock: this is a counter; its value equals the number of times that charf?
can be filled with its next value before charf? has to be refilled.

It requires the initial getting "substock:= Q".

We arrive at the following elaboration of "assign to charf2 the next valus"
(Nute. As it stands I am not very muych satisfied with the coding of version3.
The way in which SPACE before RET is smuggled in, for instance, is too tricky.

As it stands it is, however, the first version I wrote dawn for it.)

EwD227 - 13

version3:
begin if substock = O then
begin "assign to charf3 the next value";
if charf3 # UNDER and charf3 £ STROKE then pos:= pos + 1
if charf3 £ RET and charf3 # TAB then charf2 := charf3

else

begin charf2:= SPACE;
Af charf3 = RET then
begin substock:= 1; pos:= 0 en

else

begin substock::(pns +8 + 1)* 8 - pos;
posi= pos + substock end
end

end Else

begin charf2:=(i£ charf3 = TAB then SPACE else RET);

substock:= substock - 1

aQ
3
[«

The last complication presented by the structure of the Flexowriter is
its built-in memory element, called "the case". It is in one of two states,
called "upper case" and "lower case" respectively. When it is in the state
upper case it remains in this state until the key "LOWER CASE" is pressed, what
furthermore results in punching the value "LC" in the paper tape; when it is
in the state lower case, it remains in this state until the key "UPPER CASE"
is pressed, what results in punching the value "UC" in the paper tape., When
pressing any of the other keys, the punching is only dependent on the key
pressed, the pginting is (except for the space bar, the tabulataor and the

carriasge return) dependent on the current case as well,

In version4 -an elaboration of "assign to charf? the next valus"- we
have to implement the influence of the case punchings. for the benefit of it
we extend the local universe with two integer variables
octade: used to record the next punching on the paper tape
case: this variable may have the values LC or UC (or possibly a third
one, meaning "undefined", because space, tabulation and carriage
return can be processeﬁ case indspendently). It must get an

initial value, say "case:= LC".

EWD227 - 14

At this same level we implement that two legal punchings {BLANK and ERASE,
coresponding to no holes and all holes respectively) are skipped without any
passible effect on the page image. CRAZY3 denotes a constant outside the legal

range for charf3,

versiond:
begin charf3:= CRAZY3;
repeat "give octade its next value";
if octade # BLANK and octade # ERASE then
begin if octade = LC or octade = UC
then case:= actade
else charf3:= fun(case, octade)
end

until charf3 £ CRAZY3

With "give octade its next value" I indicate the paper tape read instruction
and I shall not elaborate it any'further. The function “fun(case,ﬁctade)" is
also left undescribed: it is too much dependent on the special numerical codes;
we only mention that Lpper and lower case space (tab or ret) must both be

tranamitted as SPACE (TAB or RET).

The successive insertions of version "i + 1" into version "i" is left

to the industrious reader {or should I say "writer"?).

Coancluding Remarks,

Before streseing the similarity of the ways in which our two problems
have been solved I should draw attention to a difference. In the first example
I have paid considerable attention to the decision where to put the intarféce
between the successive levels, in the second one I did no longer do so. I do
not believe that the origin of this difference is in any way related to the
suppased contrast between."scientific" and "clerical™ machine applications,

for it has a perfect historical and psychological explanation. The historical

EWD227 - 15

explanation is that I have used the prime number table generation problem in a
number of oral examinations, the psychological explanation is that, treating
the second example I am getting tired and perfectly willing to leave to my

readers the intellectual satisfaction of improvement.

Personally I am much more impressed by the similarity of the ways in which
the two rather different programs have.been constructed. The successive versions
éppear as successive levels of elaboration. It is apparently essential for each
level to make a clear separation betwsen "what it does" and "how it works", The
description of "what it does", the definition of its nett effect requires the
introduction of the adequate concepts and both examples seem to show a way in
which we can use our power of abstraction to reduce the appeal to be made upan

i

enumeration.

As stated in the introduction we may expsct that computers will became more
directly accessible for the individual user and we may expect that the latter
should like to use its capabilities for the text manipulations involved in
program compositicn. At present I am rather Unsure about the true nature of
the text manipulations the user would then like to perform: it is certainly
something more structured than just deletion and insertion of characters or
lines! In the fervent hope of getting a better understanding of what these
manipulations are I have reported two instances of program construction as

detailed and as honestly as I possibly could.

Finally: if I did hit a worth-while nail on its head, then this manuscript
should end with a proper acknowledgement, giving honour where honour is due,
Under the present circumstances I can only sxpress my gratitude to.... my

Friends or Relations, my Masters, Colleagues and Pupils.

Eindhoven. February 1968

