EWD 316:

A SHORT INTRODUCTION
TO THE ART
OF PROGRAMMING

by prof. dr. Edsger W. Dijkstra

Dictaatnr, 2,268 Prijs f 4,~-

../transcriptions/EWD03xx/EWD316.html

EWD316

EWD316: A Shart Introduction to the Art of Programming

by

prof.dr.Edsger W.Dijkstra

August 1971

33
44
53
64

76
89

Cantents

Preface

Some fundamental notions

Programming languages and their implementation
Variables and relations between their values
Programs corresponding to recurrence relations
A first example of step-wise program composition
The shortest spanring subtree of a graph

The towers of Hanci

The problem of the eight queens

A rearrsnging routine

FWDain ~ O

EwWD316 = 1

Nreface.

The market is already so heavily overloaded with intraductory texts on
camputers and computer programming that one must have rather specific reasons
to justify the investment of one's time and energy in the writing of yet
another "Short Introduction to the Art of Programming". The sole fact that
ane likes to write is, in itself, an insufficient justification. Before
undertaking such a task I should therefore ask myself ﬁWhy am I going to do
it?" and also "What do I expect tpo be the distinguishing features of this

little monograph?".

There is a simple, practical reason. At my University 1 give, mainly
far future Mathematicsel Engineers, an introduction to the art of programming
and my students would welcome some supporting material. Besides that, without
some form of lecture nates, my colleagues have very little idea of what I am
really trying to teach! The contents of this course show signs of settling
down ~I have now given it three times—~ and therefore this seems the

appropriate moment to produce a document that can serve as lecture notes.

These are purely locsl circumstances and as far as they are concerned,
a normal set of lecture notes —in Duteh, say— would do. The fact that 1 have
not chosen this form means that I am aiming at a larger audience. Such an
act is always somewhat presumptuaus and the ususl suthor's trick to save the
image of his modesty is to say that from various sides he has been urged to
produce his manuscript —a trick that I could apply in this case without
lying. But I don't think that I shall resort to that trick because I really
believe that a larger audience than just my students can benefit from it, or

even enjoy it.

The fact is that over the last years I have addressed myself to the
guestiun of whether it was conceivable to increase our programming ability
by an arder of magnitude and what techniques (mental, organizational or
mechanical) should then be applied in the process of program compasition.
Personally, I felt these investigations very rewarding: I gained a much
deeper understanding of the nature of the difficulty of the programming
task, 1 became much more conscious about my "programming style", which im—
proved considerably, and found myself, when programming, in much better

control of what I was doing than I had ever been before. Needless to say,

EwWD310 - 2

my teaching was heavily influernced by these experiences.

The purpose of this little monograph is to assist the programming

reader in cleaning up his own thinking, to transmit to him same mental disci-
plines by sticking to which he can aveid making his job unrecessarily difficult.
It is born out of dissatisfaction with the usual kind of programming course,
which now strikes me as like the type of driving lessons in which one is taught
how to handle a car instead of how to use a car to rrach one's intended drs-—
tination. This monograph is intended as a complement to such courses: [shall
try to present programming —to quote Niklaus Wirth— "as a discipline on its own
merits, as a methodology of constructive reassoning applicable to any problem

capable of algorithmic solution®,

1 expect the distinguishing feature of this little monograph to be its

incompleteness, incompleteness in many, many respects.

It will not be self-contained in the sense that [assume my readers
somewhat familiar with a decent higher level programming language. {This
assumption is a direct conseguence of the local circumstance that my students

have had a modest prior exposure to the cleaner aspects of ALGDL €0.)

For those readers who identify the programmer's competence with =
thorough knowledge of the idiosyncrasies of one or more of the barogue tools
into which modern programming languages and systems have degenerated, the
book will also be very incomplete, because I won't describe amy programming
language -not even the one I use— to any degree of detail. I shall use some
sort of programming language, as "a communication language" say, not for the
communication of algorithms, but for the communication of ways of thinking,

as a vehicle for programming style.

In yet another respect, this little monocgraph will be very incomplets.
As said above, I shall try to present programming "as a discipline on it§ twh
merits, as 2 methodology of constructive reasorning, applicable to any problem
capable of algorithmic solution®". At present, such a methodology does not yet
exist in the full sense of the word, only elements of it have betome apparent,
others are just lurking behind our mental horizon. This, of course, is not very
satisfactory, but it is a true reflection of the current, still rather poor

state of the art. It is a consolation that no piece of scholarship ever reaches

EwWD316 - 3

the state of perfection and 1 tell myself that the conviction that there is

more to come is rno justification for witholding what we have got.

It will alsa be incomplete as a result of the choice of the examples
and the choice of the considerations. By necessity, the examples will be "small"
progrars, while the need for-a disﬁipline becomes really vital in the case
of "large" programs. Dealing with small examples in an ad-boc fashion gives
the student not the slightest clue as to how to keep the construction of a
large program under his intellectual control. Illustrating how we can avoid
unmastered complexity, I hope to deasl with small examples in such a fashion,
that methodological extrapolatian to larger tasks is feasible. The selection
of considerations is also kept to a striﬁt minimum: we restrict aurselves to
prograrming for purely seguential machines and when we consider a trade~off
guestion, we shall usually present this in the form af a trade—off between
computatiorn time versus store requirements. In this respect the document may
strike the reader as very strongly dsted, perhaps even out-dated by the time
it appears in print. If sa, I hope that I can justify my defemse, which is
that such a reader has failed to read between the lines: it is not so much
the particulsr trade—off guestion chosen that matters, as the fact that the
problem has been approached in such a fashion that we have made a conceptual
framework im which such specific trade-off guestions can be postponed until
the appropriate mament. The only thing I can do at this stage is to urge my
readers to read between the lines as much as possible. (If gme tries to
transmit ideas or methods, ane can talk about them but that alone is insuf-
ficient: one must show examples illustrating them. When lecturing, it is my
sad experience that after having dealt with a specific example, I find the
attention of half my audience completely usurped by this example: they have
forgotten that the example was only brought to their attention to illustrate
something more general. This is a sad experience and no amount of prior warning
that this misunderstanding is bound to happen if they are not careful, has
ever erabled me to avoid it!) To put it in another way: it is my purpuse to
transmit the importance of good taste and style in programming, the specific
elerents of style presented serve only to illustrate what benefits can be
derived from "style" im general. In this respect I feel skin to the teacher
of compositior at a comservatory: he does not teach his pupils how to compose
a particular symphany, he must help his pupils to find their own style and
must explain ta them what is implied by this. (It has been this analogy that

made me talk about "The Art of Programming”.)

EWD316 - 4

There is a further class of potential readérs that will find this subject
matter very incompletely dealt with, viz. those who identify the programmer's
<ask with writing programs in, say, FORTRAN or PL/1. One of my implicit morals
will be that such programming languages, each in their own way, are vehicles
inadequate to guide our thoughts. If FORTRAN has been called an infantile

disorder, PL/1 must be classified as a fatal disease.

Although I would love to do it, it is impossible to give a true
acknowledgement, listing all persons whose relevant influence an my thinking
I gratefully remember or should remember. With my apologies to all persans
unmentioned [would like to make a few ;xceptiuns and list in alphabetical
order: my mother mrs.B.C.Dijkstra - Kluyver, R.W.Floyd, C.A.R.Hoare, P.Naur,
B.Randell, D.T.Ross, N.Wirth and M.Woodger. None of the persons listed,
however, should in any way be held responsible for the views expressed (with
the possible exception of my mother who is in some sense responsible for my

existence).

I am deeply indebted to my sister—in-law, mrs.E.L.Dijkstra - Tucker
for her willingmess to correct my use of English in yet another manuscript
and to W.H.J.Feijen for the great care with which he has screermed the text

for typing errors.

EWD316 - 5

Some fundamertal rotiors.

In this section a number of notions will be introduced, because they
are furdamental to the whole activity of prdgramming. They are soc fundamental
that they will not be dissected into more primitive cancepts. As a result,
this section will be a very informal one, analogy, metaphor and natural
languace {poetry, if 1 were able!} being the anly available vehicles to

convey their contents and connotations.

It is not unusual -although a mistake= to consider the pragrammer's
task to be the production of programs. (One firds terms such as "software
rancfacturing", proposals to measure programmer productivity by the number
af lines of code produced per month etc., although I have never seen the
suggestior i measure composer productivity by the number of notes, monthly
seribbled on his scure!) This mistake may be at the heart of the marnagement
failure which is so apparent in many large software efforts. It is a mistake,
btecause the true subject matter of the programmer's activity is not the
program he composes, but the class of possible computations that may be
evoked by it, the "production® Df which he delegates to the machine. It seems
more fruitful to describe the programmer's activity as "designing a class of
computations", rather than as "making a program". In this connection it should
te barne in mind that the more relevant assertions about programs -e.g. about
their correctness or their resource demands— indeed pertain to the computations,
rather than to the last thing that leaves the programmer's hands, viz. the
program text. It is for this reason that, when introducing fundamental notians,

T will start at the side of the computations, with the "happenings in time®,

The first notion is that of an action. An action is a happening, taking
place in a finite period of time and establishing a well-defined, intended
net effect. In this description, we have included the requirement that the
action's net effect should be "intended", thereby stressing the purposefulness.
If we are interested in the actiom at all, it will be by virtue of our interest

in its net effect.

The requirement that the action should take place in a finite period
of time is most essential: it implies that we can talk about the moment TO,

when the action begins, and the later moment T1, when the actian ends. We

EWD316 - 6

assume that the net effect of the action can be described by comparing "the

state at moment TO" with "the state at moment TV,

An example of an action would be a housewife peeling the potatoes for
the evening dinner. The net effect is that the potatoes for the evening dinner
are at moment TO still unpeeled, say in the potato basket in the cellar, while
at moment T1 they will be peeled and, say, in the pan they are to be cooked

in.

When we dissect such a happening as a time sequence of (sub)actions,
the cumulative effect of which then equals the net effect of the total

happening, then we say that we regard the happening as & seguential proecess,

or process for short.

Whenever such a dissection is permissible, we can regard the same
happening either as an action, or as a sequential process. When our interest
is ¢onfirmed to the net effect, to the states "before and after", then we
regard it as an action. If, however, we are interested in one or more inter-
mediate states as well, then we-regard it as a process. In the latter case
the moment TO coincides with the beginning of the first subaction and the
end of each subaction coincides with the beginning of the next one, with the
exception af the last subaction, whose end coincides with T1, the end of the

whole happening.

1 must stress, that whether some happening is regarded as an action or
as @ process is not so much an inherent property of the happening as an
expressien of our mood, of the way in which we prefer to look at it. {Why we
should want to look at it in different ways will be left for later discussion.,)
Similarly, if we have chosen to regard the happening as a process, the way
in which it has been dissected is also not so much an inherent property of
the happening as a result of which of its distinguishable intermediate states

{for some reason or another) we wish to take into consideration.

The happening of the potato—peeling housewife could, for instance, be

described by the time-succession of the following subactions of the housewife:

EWD3i6 - '/

"fetches the basket from the cellar;
fetches the pan from the cupboard;
peels the potatoes;

returns the basket to the cellar"

Here the total happening has been described as a time—succession of
four subactions. In order to stress that we have giver the description of a
happening, we have phrased it in the form of an eye—witness account. Nate,
that if the eye-witness did not bother to describe that the basket was
fetched from the cellar before the pan was fetched from the cuphoard, the
first two lines would have been condensed into a single subaction "fetches

the basket from the cellar and the pan from the cupboard”.

We postulate that in each happering we can recognize a pattern of

behaviour, or pattern for short; the happening occurs when this pattern is

followed. The net effect of the happening is fully determined by the pattern
and Lpossibly) by the initial state (i.e. the state at moment TC). Different
happenings may follow the same pattern; if these happenings establish different
~et effects, the net effect must have beern dependent on the initial state as

well, and the corresponding initial states must have been different.

How we can recognize the same pattern in different happenings falls
autside the scope of this text. If we meet a friend, we can recognize his
face, no matter what facial expressidn he shows: it may be an expression we
have mever seen an his face before! Similarly with different happenings: we
recagnize the same pattern, abstracting from the possibly different initial

states and net effects.

We return for a moment to the housewife. On a certain day she has peeled
the potatoes for the evening dinner and we have an eye-witness account of this
happening. The next day, again, she peels the potatoes for the evening dinner
and the second happening gives rise to an eye~witness account equal to the
previous one. Can we say, without further ado: "Obviously, the two accounts
are erqual to eachother for on both occasions she has done exactly the same

thing."?

How correct or incorrect this last statement is depends on what we mean

by "doing the same thing”. We must be careful not to mske the mistake of the

EWD316 - 8

journalist who, covering a marriage ceremony, reported that the four bridesmaids
wore the same dress. What he meanl to say was that the four dresses were made
from material of the same design and -apart from possible differences in size-

according to the same pattern.

The two sctions of the housewife are as different from eachother as the
dresses are: they have, as happenings; at least a different identity: one
took place yesterday, one today. As each potato can only be peeled once, the
potatoes involved in the two happenings have different identities as well;
the first time the basket may have been fuller than the second time; the

number of potatoes peeled may differ, etc.

Y=zt the two happenings are so similar that the same eye—witness account
is accepted as adequaté for both occasions and that we are willing to apply
the same name to both actions (e.g. "peeling the potatoes for the evening

dinrner").

An algorithm is the description of a pattern of behaviour, expressed

in terms of a well-understood, finite repertoire of named {so-called "primitive")
actions of which it is assumed a priori that they can be dore (i.e. can be

caused to happen).

In writing down an algorithm, we start by considering the happening to
take place as a process, dissected into a sequence af subactians to be done
in succession. If such a subaction occurs in the well-understoad, finite
repertoire of named actions, the algorithm refers to it .by its name. If such
a subaction does not occur in the finite repertoire, the algorithm eventually
refers to it by means of a subalgurithm in which tbe subaction, in its turn,
is regarded as a process, etc. until at the end all has been reduced to

actions from the well-understood, finite repertoirs.

The notion of an algorithm, of an executable precept for the establish—
ing of a certain net effect, is very well known from daily life: knitting
patterns, directions for use, recipes and musical scores are all aléorithms.
Ang if one asks the way to the railway station in an unfamiliar town, one
asks esgsentially for an algorithm, for the description of a pattern of

behaviour which, when followed, will lead to the desired goal.

EWD316 - §

In_our definition of an algorithm_we have stressed that the primitive
actions should be executable, that they could be done. "Go to the other side
of the square." is perfectly acceptable, "Go to hell.", however, is not an

algorithm but a curse, because it cannat be daone.

Besides that we have stressed that the repertoire should be well-under-
‘stood: between the one who composed the algorithm and the one who intends to
follow it there should be no misunderstanding about this repertoire. {In this
respect knitting patterns are, as a rule, excellent, recipes are of moderate
quality while the instructions one gets when.asking the way are usually
incredibly bad!) How essential this lack of misundefstanding is may perhaps
best be demonstrated by a recipe for jugged hare as it occurs in an old Dutch
cookery-book; translated into English the recipe runs as follows: "One taketh
a hare and prepareth jugged hare from it.", The recipe is not exactly wrong,

but it is hardly helpful!

Let us now contrast the eye-witness account of the potate peeling

session: nfetches the basket from the cellar;

fetches the pan from the cupboard;
.pegls the potatoes;

returns the basket to the cellar"

with the corresponding algorithm —the set of instructions, say, the housewife

might give to 8 new maid-:

"fetch the basket from the cellar;
fetch the pan from the cupboard;
peel the potatoes; -

return the basket to the cellar"

Comparing the two, we may well ask what we have gained, for it seems
a roundabout way of doing thinés: describing a pattern of behavigur which,
when followed, will evoke the happening, while in the eye—witness account we

had an excellent way of describing the hapbening itself.

What have we géined? Well, nothing as long as we restrict ourselves to
algorithms that can be given —as in our example— by & concatenation of names
aof actions, to be . done in the given order. Under that restriction an'éye-

witness account of the actions "as they teke place” is equally gonod. But the

EwWD316 = 10

behaviour of the housewife (or the maid) could be a little bit more complicated:
let us suppose that after the pan has been fetched, she puts on an apron if
necessary, i.e. when she wears a light-coloured skirt and that on one day she

uses the apron while on the ather day she doesn't.

On a rather abstract level —i.e. without explicit mentiening of the apron
and the condition under which it is used, a uniform eye—witness account would

s§ill do (in some fashion) for both sessions, e.g.:

"fetches the basket fram the cellar;
fetches the pan from the cupboard;

takes preparétion with regard toc clothing;
peels the potatees;

returns the basket ta the cellar"

with the implicit understanding that "takes preparation with regard to
clothing" covers the empty action when her skirt is not light—coloured and

covers putting on an aprnn‘when ber skirt is light—coloured.

If, however, we want to go into more detail and want to mention the
apron explicitly, then "takes preparation with regard to clothirg" has to be

replaced in the eye-witness account of the one day's session by
"sees that her skirt is light-coloured and therefore puts on an apron™
and in the other day's sessiaon by

"sees that her skirt is mot light-coloured and therefore omits putting

on an apron®

The trouble is, that the eye—witness account cannot contain the single

sentence:
"puts on an apran if her skirt is light—coloured"

for then the audience justly asks "does she do it or not?". In other words:
in that degree of detail we cannot cover the two happenings by the same eye-—

witness account, for in that degree of detail the two happenings differ!

It is here that the potential power of the algorithm becomes apparent,

for we can recognize the same pettern of behaviour in the two happenings and

by describing that pattern of behaviour we give something that is applicable

EWD316 - 11

under both circumstances, light= as well as dark—coloured skirt. This is
passible tharks to the fact that whal actually happens wher a certain pattern
af behaviour is followed may be co—determined by the state of affairs which

is current when the action begins.

We see two things: the inspection of whether the skirt is light-coloured
or not and, depending on the outcome of this inspection, the action "put on
an apron" is to take place or not. In order to express this conditionsl
execution we reed in our algorithm another connective besides the semicolon,
In our example of the algorithm (I refer to the instructions to the new maid)
the semicolon had a double function: in the text it separates one action name
from the next action name, but besides that it implied for the happening a
certain amount of what 1s technically called "sequencing control', i.e. it
was meant to imply that the end mament of the preceding actiorn should co-incide
with the beginning of the following action. We now need another conrective,
indicating whether or not the inspection should be followed by the next action

in the text. We write for instance the following algorithms:

"feteh the basket fram the cellar;

feteh the pan from the cupboard;

if skirt is light-coloured do put on an apron;
peel the potatoes;

return the basket to the cellar®

(For historical reasons the so-called conditional connective "if...do"

is split into two symbals tiﬁ" and "do", enclosing the inspection.)

The conditional connective conmects two actions, the first of which must
be a so~called "inspection". This inspection describes a state of affairs,
which may be true or false ("false“ is the technical term for "not true").

The happening which is to take place corresponding to the conditional

compound Ce s . .
P "if ingpection do action"

may take one of two mutually exclusive farms: either the inspection gives the
result true and it is followed by the action, or the inspection delivers the
result false and thereby the whole compound action has been completed. The

algorithm derives its superiority over the eye—witness account from the fact

that it may contain connectives (such as the conditional connective) that

imply a more elaborate sequencing control than the semicolon,

EWD316 — 12

We need a further connective before we can see the full superiority of

the algorithm over the eye-witness account, viz. a repetitive connective.

Suppose that we want to express that "peeling the potatoes" is in itself
a process that deals with cne potato at a time and that, correspandingly, our
primitive action is named "peel a next potato". If the number of potatoes to
be peeled is a fixed constant, say always 25, then we can replace "peel the
potatoes" by 25 times "peel a next potato”, separated from eachother by in
toto 24 semicolons. But we now assume that the number of potatoes to be peeled
may differ from one day to the néxt; yet we want to recognize in each peeling
session the same pattern of behaviour. We suppose the housewife capable of
looking into the pan and judging whether the amount of peeled potatoes is

sufficient or naot.

If we know a priori that in the worst casé (i.e. many guests and very
small potatoes) she will never have to peel more than 500 potatoes, we can
give a general algorithm describing the actual peeling by repeating in the
text of our algorithm 500 times (separated by in toto 499 semicolons) the

canditional compaund:

"if number of peeled potatees is insufficient do peel a next potato” .

Several objections can be made to this solution. There is the practical
obhjection that it would reduce the construction of algorithms to doimg lines.
Furthermore we had to make the fundamental assumption that we krnew in advance
a maximum number. Often it is wvery hard to give such an upper bound a priori
and if it can be given, such an upper boumd is usually many times larger than
the average value. And if in actual fact 25 potatoes have to be peeled, the
26th inspection "number of peeled potatoes insufficient" —i.e. the first one
to deliver the result “false"- gives fresh information, the following 474
inspections (which are prescribed by the slgorithm as suggested} give no new
infarmation. Once the housewife has established that the number of peeled
potatoes is np longer inéufficient, she should not be forced to look into

the pan another 474 times in order to convince herself!

In order to meet these objections, we introduce a repetitive connective

which, again for historical reasons, is written in two parts "while...do".

Using this connective we can write the algorithm:

EWD316 - 13

"fetch thec basket from the cellar;
fetch the pan from the cupboard;
if skirt is light-ceoloursd do put on an apron;
while number of peeled potatoes is insufficient do
pee}l a next potato;

return the basket to the cellar™

The process corresponding to
"while inspection do action"
-onsists of one or more executions of the conditicnal compound
"if inspection do action" ,

viz. up to and including the first time that the inspections gives the result

“"false".

We can aslso describe the semantics of the repetitive conmective in

terms of the conditional one recursively:
"while inspection do action"
is semantically equivalent to

"if inspection do

begin action; while inspection do action end"

Here the symbols "begin” and "end" are used as opening and clesing bracket
respectively; they are a syntactical device to indicate that the conditioral
connective connects the inspection (from the first line) to the whole of the
second line: the value delivered by the first inspection decides whether what
is described on the second line (from begin until ggg) will be done in its

entirety or will be skipped in its entirety.

Note. In the sbove I have approached the idea of an algorithm starting my
considerations from the class of happenings in which we wanted to discern

the same pattern of behaviour. In addition to the semicolon as cornective in
the text of the algorithm this led to other connectives such as the conditional
connective "if,..do" and the repetitive connective "while...do". It is not
unusual to epproach the relation between algorithm and computations from the
side af the algorithm; such an apprasch lszads in a very early stage to

syntactical considerations, as a result of which the connectives are introduced

EWD316 - 14

in a somewhat different terminology. Instead of
"if inspection do action”

people write "if condition do statement" .

The part of the text demoted by "“if condition do" is then described
as "conditional clause™, which is regarded as a prefix attached to the
"statement™, the whole construction comprising clause and statement together

is then called "a conditional statement”. Similarly, in
"while condition do statement®

"while condition de" is called "a repetitive clause™ and the statement is
called "the repeatable statement". This terminolaogy is so widely used that
=in spite of its syntactical grigim~ I shall not refrain from using it

whenever I see fit to do sao.

As a final exercise I shall describe the pattern of behaviour of a
housewife who -for same obscure reason— is so conditicned that she can only

peel an even number of potatoes for the evening dinper:

"fetch the basket from the-cellar;
fetch the pen from the cupboard;
Af skirt is light-coloured do put on an apron;
while number of peeled potatoes is insufficient do
begin peel a next potato; peel a next potato end;

return the basket to the cellar® .

This example is included to show that the same set of primitive actions allows

different patterns of behaviour.

The notion of an algorithm is a very powerful one, for a single
algorithm "extracts” what a large number of different happenings may have in
common. And it dees not do so by ignoring details, on the contrary, a single
algorithm covers a whole class of happenings to the very degree of .detail in
which the corresponding eye-witness accounts would differ from sachother. The
possibly largg number of different corresponding happenings is generated by

the different ways of sequéncing as might be cantrnlls& by the conditional,

the repatitive (and similar, see later) connectives.

EWD316 - 15

On tke one hand we have the algorithm, a finite text, a timeless, static
eoncepl; on the olber hand we have the correspanding happenings that may be
svoked by it, dynamic concepts, happenings evolving in time. The intimate
relation between the two —to which we refer by the term "sequencing”- lies
at the heart of the algarithmic notian. (It is to this intimate relation
that 1 refer whenever I stress that the programmer's true activity is "The
design of classes of ccmputatinns".) The notion of an algorithm is admittedly
a very powerful ane; before going on, however; I shall allow myself a little

detour in order to indicate what “price™ we have paid for its introduction,

We have stated that we restrict ourselves to happenings taking place
in a fimite period of time. Whenever an algorithm is followed, & happering
is taking place, eventually as a time—succession of primitive actions. It
is only realistic to postulate that each primitive action will take a finite
period of time, unequal to zero: no action will take place "infinitely fast".
This implies that we confine our attention to happenings that are taking

place as a time-succesion af a finite number of primitive actions.

And now we are beginning to see the price: it is very essy to write
down a text that looks like an algorithm but that is net an algorithm in our
sense of the word, because the effort to follow it turns out to be a never-

ending task, e.g.
"while skirt is light-coloured do peel a next potato" .

When we assume that the peeling of a next potato does not imfluence the caolour
of the skirt, we have just two cases: either the skirt is not light-coloured
and the oniy action taking place is the inspection establishing this fact,

or the skirt is light-coloured and will remain so and what the pattern could
be interpreted to describe is the peeling of an infinite number of next

notatoes. This is usually called "an improper algorithm".

The question of whgther a text that looks like an algorithm is indeed
a proper algorithm or not, is far from trivial. As a matter of fact Alan M.
Turing has proved that there cannot exist an algorithm capable of inspecting
any text and establishing whether it is & proper algorithm or not. The
assumption of the existence of such an algorithm leads to a contradiction which

will be sketched below. Suppose that we have such an algorithm, an ingpection

'proper(L)"

EwD316 - 16

which delivers the result true when the text nemed L is & proper algorithm

and the result false when it is improper. Cansider now the following text,

named L:

L: "while praper(L).gg whistle ance"

(in which "whistle once™ is assumed to be an available primitive). If we
start to follow this algorithm, how many times will a whistle sound? The
assumption that "proper(L)" delivers the result true will cause the algorithm
to he improper and vice versal! The conclusion is that no algorithm faor the
inspection “proper" can exist. (Marvin Minsky concludes in “Computation,
Finite and Infinite Machines", Prentice Hall, 1967 a furmal treatment of this
proof with the sentence: "We have only the deepest sympathy for those readers
who have not encountered this type of simple yet mind-boggling argument

before.".)

The moral of this story is that it is an intrimsic part of the duty of
everyone who professes to compose algorithms to supply a proof that his text

indeed represents a proper algorithm.

Our next fundamental notion is a machine (or a "computer"). A machine
is g mechanism capable of causing actions to take place following a pattern
of behaviour such as can be described by algorithms expressed in terms of a

repertoire of primitive actions belonging to this machine.

Above we have given two algorithms for peeling potatoes, one for a
natural rnumber of potatoes and ome only for even numbers of potatoes. Both
algorithms Have beern expressed in the same repertoire of primitive actians,
They were introduced in the realm of “pbserving happenings"; the ore could
describe the pattern of behaviouf of my left-hand neighbour, the other the
one of my right-hand neighbour. Suppose that my own wife
1) is also capsble of performing those primitive actions
2) will mccept from me algorithms expressed in these primitives and will

follow such an algorithm obediently.

Then I can make her peel either as my left—hand neighbour or as my right—hand
neighbour, depending on the algorithm I have supplied to her. Then she is an

example of a machine.

Fwn3ie - 17

A mechanism that can only do one thing {such as one of the most widely~
spread automala, the toilet flusher) is rot called a machine. Essential for
us is the assaciated repertoire of actions, the sbility to accept patterns

of behaviour and to behave accordingly.

Machines are mechanical algarithm followers. The fact that in the last
decennia increasingly pawerful machines have become available to mankind is
direct.y responsible for the increased importance of and interest in algorithms

and their composition.

Note. It is a trivial matter to compose an algorithm for the fastest machine
in the.wmrld, a proper algorithm in the theoretical sense of the word but
somewhat impractical, as it would take the machine a million years to carry
the corresponding process to completion. The claim that "the machine is
capable of causing the process to take place" is then somewhat subject to
doubt: in actual fact it carmot. In what follows we shalln't be bothered by
the distinction between "theoretically possible" and "practically fessible".
Not because we are impractical, on the contrary! The point is that in the
meantime computers are so pawerfﬁl that the class of practically feasible
computations is by now sufficiently large —to put it mildly!= to make
machines very wseful and intriguing pieces aof equipment, fully worthy of

our attention.

Wie call an algorithm intended to control the behaviour of a machine,
a program. In ather words, we reserve the name program for those algnrithﬁs
that are intended for mechanical execution. In the general notion of an
algorithm we have only required that the repertoire should be "well-understood",
without bothering how this Uﬂdefstanding is established: if a composer
indicates "Andante" (= "going")} for a composition in three—four time, he may
do so, because, remarkably enough, we may expect this indication to be somehow
meaningful even for a player with two legs. In the case of a machine, the
cituation is drastically different, for a machine is a finite piece of eguipment
which, by its very construction, has associated with it a finite, very well
defined repertoire and whenever it is fed with a program it shall behave

'exactly as prescribed.

The fact that machines are completely obedient slaves has caused

complaints from many beginning programmers. Their cbedience, they felt, makes

EWD316 - 18

programming cruelly difficult, for a trivial mistake in the program is sure

to lead to entirely unintended behaviour. The programmer's inability to appeal
to "the common sense of the machine" has been experienced as one of its major
shortecamings. The more experienced programmer learns to appreciate its servile,
strict obedience: thanks to it we can instruct it te do something "uncommon'!
And this is something you cannot da with a servant who "rounds off" his

instructions to the nearest probable interpretation,

In the preceding paragraphs 1 have introduced prﬁgramming as an
important activity because now we have machines that can be controlled by
programs and for which we have tp compose programs when we want to use them,
i.e. when we want to convert them into tﬁe tool sglving our problem. But this
is not the whole story. A computer is a many—sided thing. For its manufacturer
it is primarily a product that he can {hopefully) produce and sell with
prefit. For many institutiesnal buyers the computer is probably primarily a
status symbol. For many users it is either a source of endless worries aor,
as the case may be, 2 highly useful toel. In University surroundings, the
view of the computer as a tool to be used tends to be the predeminant one.

And there is no denying it: in tHeir capacity of tools the computers are
changing the face of the earth (and of the moon as well!). Yet I am convinced
that we underestimate the computer's significance if we confine our appreciation
of it to the aspects mentioned. They may cause shocks to the basis of our
society, but I believe that in the longer run these will turn out to be but
ripples on the surface of our culture. I expect a much more profound influence
from the advent of the modern computer, viz. in its capacity of a gigantic

intellectual challenge, unprecedented in the history of mankind.

The computer as a piece af equipment presents us with an entirely new
combination of simplicity and power, which makes the programming task a
unique challenge. When the elsctronic engineers have done their job properly,
they present to the programmer a mathematically trivial piece of equipment.
1ts instruction code {its. "repertoire") can be described perfectly well on
a modest number of pages, everything is finite and discrete, there is just
no place for canceptuallj difficult mathematical notinns, such as continuity,
infinity, limits, irratiaﬁal numbers and whatnots. The mathematical basis of
programming is just very, very simple. so simple that programming should be
easy: it should be easy to conceive programs, it should be essy to caonvince

oneself that 8 program is correct and that the machine working under its

EWD316 - 19

control wiil indeed produce the desired result. From its basic simplicity
one derives the intuitive feeling that it should be a trivial matter to keep

the happening evoked by one's program firmly within one's intellectual grip.

But its basic simplicity is only one side of the coin: the other side
presents the extreme power (bnth as regards capacity and speed) of currently
available computers. As a result of its extreme pawer, both the amount of
information playing a roie in the computations as well as the number of
operatiors performed in the course of a computation, escape our unaided
imagination by several orders of magnitude. Due to the limited size of our
skull we are absoclutely unable to visualize to any appreciable degree of
detail what we are going to set in motion, and programming thereby comes an
activity facing us with conceptual prablems that have risen far, far above

the original level of triviality.

It is the possibility of considering realistically effective solutions
of any degree of sophisticatian, combined with our complete intellectual
crip on what we are considering, which will deeply influence our ways of
thirking and our appreciation of our own thought processes. It has no precedent,
for whenever in the past we were faced with something powerful (a storm or an
army) we never had effective control over it. (This, for a leng time, used
to be the definition of "powerful"”, viz. that we were "powerless™ in the

face af it!)

EwD3te — 20

Programming Languages and their Implementation.

The activity of composing programs is called “programming". In the
preceding section we have introduced programs as algarithms intended to
cantrol the behaviour of machines and by virtue of the actual existence of
such machines, programming is a very practical activity. It is one of the
youngest branches of applied mathematics {(in the broad sense of the word,
i.e. not confined to mathematical physics or numerical analysis), it is as
important as the applications in question, it is practical in the sense that
it is the programmer's intention.that a machine will actually display the
behaviour as prescribed by the algorithm. For that reason a conscious
programmer should respect the limitationé of the {(finite) machines. Alterrmative
programs causing a machine to establish the same ret result and therefore in
that respect equivalent, may differ greatly in what is usually called
"efficiency™, i.e. in the demands they make upon the machine's resources.
For many years, efficiency has been used as the sole yard—stick along which
to compare the relative gquality of alternative programs for the same task.
In the meantime, programming has turned put to be sa difficult, that other
quality aspects have gained relafive importance, such as the ease with which
we can understand & program, can convince ourselves of its correctress ar
can modify it, etc. Yet, efficiency conhcerns cannat be ignored and in arder
to give the reader some feeling for the nature of the limitations he should
respect, we shall give in this section an overall view of computing machines

and the way in which they execute programs.

In this little monograph we shall confine our attention to sequential
algorithms, i.e. algorithms describing what actions should happen in succession,
cne after the other. Such algorithms have a property for which they have been
blamed (and not entirely without justification), viz. that they are often
"overspecific" as regards the order in which things have to happen. If two
actions, say "A" and "B" have both te be done, a purely sequential algorithm

will prescribe
gither "A; B" or "H; A" '

viz. action A followed in time by action B or the other way round. It will
not express that the order is immaterial and, what is possibly wore important,

it will not express that the two actions are sa "non-interfering" with eachother

that they may take place concurrently, or =tp use the jargon— may be done in

EWD316 ~ 21

parallcl.

For various reasons | have decided to restrict my attention to purely
seguential programs. The most obvious reason is to be found in the structure
af the machines that are currently available or carm be expected to become
available in the next years. Ope or two decades age, machines used to be
purely sequential. In the meantime we have got equipment allowing for a
limited amournt of parallelism (dual processor machines, independent communication ”
channels etc.), but such pieces of equipment are at best an aggregate of a
small number of individual sequential components. In such machines the
potential parallelism of activities is exploited by standard control programs
{so-called "operating systems"), while the individual user still works in a
strictly sequential enviromment. And it is to the individual user that this

iittle monegraph addresses itself.

With the advent of what is called "large scale integration" (being a
term fram the computer field, its acronym "LSIM is better known!) it seems
to become technically feasible to build machines more like "clouds of arithmetic
units" with information processiné activities gaing on simultaneously all
over the place, for shorter pericds of time even independently of eachather.
Pragramming for such machines will pose completely different trade—off
problems: one will be willing to invest in potentially useful computing activity
before its actual usefulness has been established, 211 for the sake of speeding
up the whole computation. But although I know that such machines may be coming,
I shall ros touch these problems for the following reasons. First, as far as
general purpoase applicaetigns are concerned, I have my doubts about the
effectiveness with which such forms of parallelism can ever be exploited.
Secand ~and that is the most important considerstion— parallel praogramming
is an order of magnitude more difficult tham sequential programming., (This
statement will be doubted but I have enough experience in multiprogramming
to feel myself entitled to say so. The point is that with parallelism a
great variety of happenings may take place under control of the same prugram(s).
On account of undefined speed ratios s set of parallel programs is written
for a partly non—deterministic machine and special care is required to ensure
that, on a higher level of abstracticn, its total behaviour can again be
regarded as uniquely determined by the program{s).) Third, I am not over—

impressed by the complaints that sequential programs specify a more stringent

EwD3te - 22

time~succession than logically necessary: [have aften the somewhat uneasy
feeling that these complaints find their origin in the mathematical traditian
of the pre—computer age. In classical mathematics the notion of an algorithm
has been neglected; mind you, I am not blaming the previous mathematicians

for this, because before the actual existernce of automatic computers, algorithms
were hardly a relevant subject. But we shaould not close our eyes to the fact
that the course of history has caused mathematics to be more tuned to timeless
problems, to static relations, to functional dependence. (The existence of
classical mechanics does not contradict this observation: renaming the indepen—
dent variable in the differential equations "k", say, instead of the usual "
does npt influence the mathematics inualyed.) Some of the efforts to remove

the overspecification of the time-~succession —they rely heavily on fumctional
dependence— strike me as tackling the programming problem with classical
concepts that have been developed for other purposes. So much for my decision

to restrict my considerations to sequential machines.

To get same feeling for the demands made upanh the modern automatic
computer, let us focus our attention for a moment upon an average sizeable
computation, feor instance, the computation of (a good approximation of) the
inverse of a given matrix of, say, 100 by 100 elements. Such a job has two
markedly quantitative aspects:

a) a vast amount of numbers is involved: posing the problem implies the
. specification of 10.000 numbers, the answer is also given by 10.000

numbers {each of which is, in general, a function of all 10.000

elemsnts of the given matrix)

b) g vaest amount of computation has to be done: if it is done by eliminstion,
the number of operations (i.e. multiplications and additions) is af the

order of magnitude of 1.000.000.

The comgtruction of machines able to cope (reliably!) with these two
very different aspects of "multitude™ is one of the greater triumphs of
electronics., It has been achieved by applying the 0ld and well-known principle:
"Divide and Rﬁls.". In modern computers one can distinguish two vital components,

each of which has the specific task to cope with one of the forms of multitude.

a) the stare (called "memory"® in American); this is the component able to
receive, store and return vast amounts of information; its primary

function is to he large, to be able to contain very much information

EWD316 ~ 273

b) the arithmetic unit or processor; this is the component in which the
actual work —adding, subtracting, multiplying, comparing etc.- is done;
ils primary function is to be very fast so that it may do a great deal

in a limited period of time.

It is not the furction of the arithmetic unit to be large in the sense
that it should contain large amounts of information. On the contrary: while
nearly all the information, relevant for the computation at large, lies
“sleeping" in the store, at any moment of time only the tiny fraction actually
involved in the information processing activity is found (copied) in the
arithmetic unit, which is only capable of dealing with a few numbers at a
time, say the two numbers to be added and the sum formed by the act of
addition. Whemever two numbers (in store) are to be added, they are trans-
ported from the store te the arithmetic unit, where the sum will be formed;
once formed the sum will either be kept in the arithmetic unit for immediate
further processing or it will be sent back to store for later processing.
Microscopically, the stare acts as the icebox in which all infarmation is
kept which is not involved in the current activity aof the aritbmetic unit.
If small letters indicate variables in store and R indiﬁates a register in

the arithmetic unit, the computation
xi= (a + b)*(c + d)

might be evoked by the following sequence of instructions:

t:= R;

R:= ¢;

R:= R + d;

R:i= t * R;

x1= R .

The first instrﬁction fetches the wvalue of "a" from store into the
register R, the next one increases (the contents of) R by the value of "b"
{from store). At this stage one of the two factors to be multiplied has been
cumpﬁted. Before the multiplication can take place, the second factor has to
have heen computed as well; in a machine with a single register R for arithmetic
results, this second.additian implies again the use of the register R. In

order to mske this register aveilable for this purpose, the third instruction

EWD316 - 24

sends the value of the first factor —a so—called "intermediate result"- back
to store, assigning it to a variable here named "t": the first sum is sent
back to store for later usage, The fourth and fifth instructions compute the
secord factor, the value of which is left in R, ready for multiplication by
tFe stored value called ™t". The last instruction stores the product, now

formed in R, so that it can be retrieved under the name "x" for later usage.

The above example illustrates many things. It shows bow

x:= {(a + b}*(c + d) ’

wkich on ane level of intersast can be regarded as a single action, on closer
inspection turns out to be a sequéntial pruces? taking place as a time=succession
of seven more primitive sub—actions ("program steps"). It also shaws that at

any mament in time only a tiny portion af the algorithm is in active control

of what actually happens: while the first or the second addition is performed,
the fact that.the two sums will have to be multiplied is still "dormant®. (If

the total action had been
x:= (a + b)/{c + d) '

tte only modification necessary would have been the replacement of the sixth

instruction by Riz t / R ,
b k)

tte first five instructions would have been insensitive to this change. That

is what I meant by "dnrmant“.)

It also demonstrates that, just as at any moment in time, only a tiny
fraction of the numerical information is involved in actual processing, alsc
anly a tiny fraction of.the program exercises control, viz. the instruction

currently executed..

It also demonstrates that it is no good just to divide the machine inte
two components, stgre and arithmetic unit, but that one must also provide for
a (dense) information traffic between the two: this is provided for by what

connects the two together, the so—called "selection".

We have said that the store should be able to store information; it must,
for instance, be able to store "numbers®™, e.g. the intermediate result called
"¢, Dbviously, these numbers cannot be kept in store like balls in an urn:

when the instruction

EWD316 - 25

R:= t ¥R

has to be executed, the store must not return just any number, but gquite
definitely it must return the value sent to it two instructions earlier. For
that reason the numbers in store are not arranged as balls in an urnm, on the
contrary! Stare is arranged as a number of so—called "storage cells™, each
capable of holding the value of one number at a time., Each storage cell is
identified by its so-called "address"; each time contact with the store is
required -either to receive or to return information— this request is
accompanied by a statement of the address of the storege cell involved. If
the store is to receive information —this is called "writing into store"— the
value to be stored and the address of the storage location involved (plus a
"write request") are sent to store and selection respectively; as a result

of the writing operation the original contents of the storage cell, which get
lost, are replaced by the new value. If the store is to return information
—~this is called "reading from store"- the address of the storage cell involved
(plus a "read request”) is sent to the selection; as a result the contents

of the storage cell are returned from store (and kept in the storage cell as
well for later reading if desired). As far as destruction, reception and
reproduction of the information contained in a storage cell are concerned,
the situation shows grest analogy to a tspe in a tape recorder. You can use
the tape to record as many pieces of music as you want, but only one at the
same time: whenever you rescord a new piece of music on an old tape, its previous
contents are wiped out; the'piece of music currently recorded, however, can
be played back as many times as you wish. (Tu make the analogy a true one,

we must restrict ourselves to pieces of music of equal duration, precisely
matched to the length of the tape, matched to its (finite) information

capacity.)

Storage cells can store information by virtue of the fact that they can
be in & finite number of distinct states. In practically all computers they
arz composed of elementary components, each of which can be in one of twg
possible states. (The most common form is a little ring of ferromagnetic
material that will be circularly magnetized in ore of the two possible directions.)
One such component can be in 2 different states (say "North" and "South"), two
such components can be together in 4 different total states {"North=-North*,

"North-South", "South-North" and "South-South"), N such éompunents together

EWD3t6 - 26

can be in 2N mutually different states, The number of elementary components
sssosiated with each storage cell is a characteristic constant of the machine's
stors and is called "the word length". If the word length is 32, the number

of different possible total states per word is 232. i.e, slightly over 4*109;
the arithmetic unit will agsociate with each state a numerical value; in terms
of these numerical values a storage cell can then hold, for instance, any

integer value rangirg from (roughly) -2*109 to +2¥109.

The finite capacity of the storasge cell is something the user must be
aware pf: it is matched to the abilities of the arithmetic unit, i.e. if the
latter deals with integer values-it is geared to operations up to a certain
maximum gbsolute value, if it deals with (approximaticns of) real numbers,
it is gesred to dealing with them in a certain precision, maximum absolute
value and precision respectively being chosen such that the numerical values
to be distinguished between cam be stored in one {or possibly two successive)
storage cells. If greater integers or reals in higher precision have to
be manipulated, special measurss have to be takern which will be more

expensive.

11 the meantime we have explained enough about the general machine
structure to mention two aspects of the "costs" involved in the execution of
a program, One of them is coﬁputation time. We have seen that the arithmetic
unit performs pne operstion afier the other, and the wore aperations a pragram
prescribes, the longer the total amount of time the arithmetic unit will have
to spend to carry the computation to completion. The other one is storage
usage. If a thousand values have to be computed in order to be added together,
we may compare the following two algorithms. The first one first computes all
thousand values and stores them, after which they are edded, the second
algorithm immediately sdds each number to the partial sum as soon as it has
been computed. With regard to storage usage the first algorithm is more demanding:
at some stage of the computation it requires a sufficient amount of store to
hold all thousand values, an amount of store which in the second algorithm

remains available for other {perhaps more useful)} purposes.

So much for the finite capacity of each storage cell and the fact that
a store contains only a finite number of such cells. Let us return to their
addresses: a while ago we have hinted that each storage cell is identified by

an "address" and that each reference to store takes place under control of .

EwWD316 - 27

+he address of the storage cell concerned, but up till row we have not been
very explicit about what an address reslly is. Well, this is very simple: the
storage cells are numbered: 0, 1, 2, 3, 4, 5, ... up to and including M~1

if the store comprises M different storage cells (M between 16.000 and
1.000.000 being typical figures), and the ordinal number of sach storage

cell is used as "its address" (like houses in a street!) This implies that
the s-orage cells have a natural order, viz. the order of increasing address.
Given the address of a storage cell, the address of the next storage cell

can be computed by adding 1 to the given address of the preceding one.

This natural ordering of the storage cells is heavily exploited. If
a vector, i.e. a seguence of numbers aO, a1, ces s @ has to be stored,
its elements can be stored in successive storage cells. If the address of
element a. is known, the address of element ai can then be computed, viz.

0
by adding (the value Uf)-i to the address aof the element ao.

The natural order of the storage cells is also exploited in the
program representation. Remember, we have postulated that a machine could
"asccept" & program and that, once the program had been accepted, the machine
could execute the program (i.e. cause the happening as prescribed by the
program). In other words, when the machine is executing the program, this
program —i.e. "the information describing haw to behave'- must be somewhere
in the machinei Where? Well, in the steore, the store being specifically the
machine component able tao hold information., In other words, the store is
used for two different purposes: it holds the numerical infarmation to be
manipulated, but it alseo holds —in some other part of it— the program, i.e.

the information describing what manipulations have to be performed.

To sketch briefly how this can be done, we return to our previous

example, where X1z (a + b)*(c + d)

was decomposed into the sequence of seven instructions denmoted by

Ri= a;
R:i= R + b3
t:= Rj
R:= ¢;
R:= R + d;
R:i= t * R;.

EWD316 - 28

x:= R

and the question is: by means of what conventions do we represent the abave
infermation in a store capable of holding numbers? This is achieved by a
two—stage convention, one for representing single instructions and one

for representing a sequence.

The first convention is to choose for each instruction a unique number
cede. In the above notation we have denoted variables (ur: the addresses
of the storage cells associated with the variables and containing their
current value) with small letters (a, b, c, d, t and x); but addresses are
numters and that component is therefore already numerical. Using "s" for
"any address™ we see that in the above example, we can distinguish inmstructions

af four different types:

1) Ri=

2) Ri= R + s
3) Ri= s * R
4) s:= R

The second part of the convention associates with each type of instruction

2 number (e.g. the numbers 1, 2, 3 and 4 to the types shown above; it should
be mentioned that in actual machines the number of instruction types is
considerably larger than 4). By concatenating the digits describing the
instruction type number with those giving the address we have a number code
for each possible instruction and we assume that the word length of the
storage tell is sufficient to contain such a number. The first convention as
just described, reduces the problem of storing a sequence of instructions ta
storing a sequence af numbers. Now the second convention is that the sequence
as such is represented by storing these numbers in successive storage cells,
1.8, storage cells with successive addresses. And this completes (ruughly)

the trick.

{Note. This is by no means the only way to represent programs imside
the machine's store; in so-called "stack machines" other conventions are
chosen., The above elaboration is only shown by way of example, demanstrating

the possibility,)

The dual role of the store ~storage of instructions and storage of

variables— implies another way in which a program can be expensive to sxecute:

EwWD316 - 29

if thc program text is very long, by that very fact the program text will
makz a heavy demand an storage capacity. If we have two alternative programs
for the same job, one requiring 5000 imstructiorns to describe it and the
other requiring 10000 instructions té describe it, then —all other things

being equal- the first altermative will be cheaper.

The above concludes our bird's eye view of the so~called hardware
machine, i.e. the physical piece of electronic equipment as it is delivered
hy the manufacturer: a machine that can accept and then execute programs
written as long sequences of instructioms from an instruction repertoire
that is specific for this particular machine (and its cnpies). Until the
late fifties programmers indeed produced their programs as long sequences
of sueh instructions, but when machines became faster and when more came on
the market, the shortcomings of this way of working became more and more

apparent.

Becauss the progremmer expressed his program in terms of the instruction
repertoire of that particular machine, he was forced to tailer his program
tp that machine. He needed a thorough and ready knowledge of all the details
5f the instruction repertoire af that machine -which for the more intricate
machines was no mean task— and worse: once his program was written, it could
:nlf be executed by that particular machine. Exchange af programs between
institutes equipped with different machires was impossible; furthermere,
whenever an institute replaced its old machine by a new and different aone,
all programs for the old machine beceme obsolete. from that point of view it
was clear that tailoring one's programs so closely to the idiosyncrasies of
a specific piece of hardware was not a very wise investment of the intellectual

snergy of one's programmers.

But even without tbe problem of transferring programs from ane hardware
machine to another, this way of programming, expressing programs as a monao-—
tonous stream of machine. instructions, showed great drawbacks. One serious
drawback was that this close contact between programmer and physical machine
did not only enable the programmer to lard his program with all sorts of
coding tricks, it actually invited him to do so. for many a programmer this
temptation became irresistible; there even has been a time when it was

generally believed that one of the most vital assets of a virtuoso programmer

was that he be "puzzle—minded", and it was only slowly recagnized that a

EWD316 = 30

clear and systematic mind was more essential! When M"iricky programming" was
en voguc, programming was not only very expensive —it took toco much time-
it also turned out to be teo difficult to get a program correct. Looking
back, the period of tricky programming now strikes us as a generation of
orogrammers walking on a tight—-rope, in full confidence because they were
unaware of the abysmal depth beneath it! The modern competent pragrammer

is more humble and avoids clever tricks like the plague.

It was not only the preponderance of coding tricks that made programming

"in machine code" as it is called nowadays, toe difficult and too risky,

Firstly, a program in mechine code contaeins very little redundance and
as a result it is very sensitive to even small writing errors —errors of the

level of "spelling mistakes" or "printing errors".

Secondly, the programmer whao thinks in terms of varishles has to denote
these variables in his program text by the addresses of the storage cells
dedicated (by him) to hold their values. As a result the programmer has the

burden of storage layout and all the clerical work implied by this.

Thirdly —and this is the major reasomn— machine cade is an improper
vehicle to represent "structure": it is just = single, monotonous sequence
of machine instructions, incapable of expressing in a direct and useful farm
the structure of the algorithm. In what follows it will become abundantly
zlear that when we wish to compose programs in a reliable fashion, we can
only do so by structuring the happernings we intend to evoke, and that we are
in urgent need of a descriptive vehicle such that in the program text itself
the structure of the happenings -i.e. of the computations— can be adequately

reflected.

The sbove shortcomings led to the design of so-called "(higher level)
programming lanquages". A programming language can be regarded as the
machine code for a fictitiocus, idealized machine. Whereas the old machine
codes were tailored to the needs of the hardware -i.e. the equipment elec-
trunic ergineers could make- programming languages are more tailored to the
intellectual needs and conceptual difficulties of the programmer wha has to

design the computations.

EWD316 = 31

The problem mow is that on the one hand we have the hardware machine
A, thot con be built but for which we don't like to program because it is too
cumbersome, and on the other hand we have "dreamed up'" the fictitious machire
B, for which we would love to program but which the engineers cannot build.

How do we bridge that gap?

The gap is bridged hy "software": given machime A, we can make, once
and for all, a program (in the machire code fer machine A) which prescribes
to machine A the pattern of behaviour it should follow if it is to simulate
machine B. Such a program is called "saftware for machine A"™. Given hardware
machine A, lopaded with scftware, we have a mechanism ~partly "hard", partly

"soft"— that is able to execute programs written for the fictitious machinme B,

Usually this combination of hard— and software processes such programs
in twa stages. In the first stage (the "translation stage") the program
written in the programming language B is subjected to a translation process.
In this process a storage layout is decided, the necessary bookkeeping is
carried out and an equivalent prougram —but now expressed in machine code A-
is produced. In the second stage (the "executian stage") the autput of the
first one is interpreted by machine A as a program and the intended computation

is pvoked.

The standard software that goes with the machine shields the user from
the idiosyncrasies of the specific machine; apart from that it invokes ~behind
the user's back, so to say— the standard ways of dealing with the tpugher
praperties of the hardware, such as the passible parallelism (i.e. concurrence
in time) af the cemputation proper and information trensfers fram and to
peripheral devices and multilevel stores. Up till now we have described the
hardware as if all storage cells were equally well accessible for the
arithmetic unit. In practice this is seldom the case, two storage levels
being guite common: primary store (usually ferrite cafes) and secondary
store (usually magrnetic drums). The cells in primary store are the only ones
that are directly and immediately sccessible for the arithmetic unit; the
infarmation in secondary stare (which in capacity is an order of magnitude
larger than primary store) is not directly accessible for the arithmetic
unit, but the possibility of bulk transfers between primary store and
secondary store is available instead. In such machines, the softiwasre may

move the information around between the two stores, all the time keeping

EWD316 - 32

track of where everything is to be found at any moment and trying to keep
ir primary stare all "currently relevant" infarmation. (This is called "the

implementation of a wvirtual store",)

We have mentiorned the concept of the virtual store because it is
related to an efficiency aspect over which the programmer has some control
and in regard to which the programmer therefore has some responsibility.,
This is called "vagrancy'". A program has a small degree of vagrancy whenever
for larger periods af time accasses are confined to a small, dense subset
of the total amount of infarmation; in that czse the hope is justified that
during that period of time, this dense subset will be kept in primary store
and that therefore the computation can go on at full speed. In computations
with high vagrancy, the probability of information needed in secondary store
is much larger and the transport facilities between the storage levels then
tend to become the bottie-neck. Therefore, if possible, bigh vagrancy

should be avoided.

EWD316 - 33

variables and relations between their values.

Wher introducing the basic nations we have said that different
happenings could take place followinmg the same pattern ef behaviour. And as
the happening is fully determined by the canfrontation of the pattern of
behaviour with the initial state, it follows that the same pattern of
behaviour can aonly evoke different happenimgs on different occasions when
at these different occasions the initial statesrdiffer from eachother. In
this section we shall show how so-called variables are used for the
description of the (initial and fimal) states, We find the typicel use of
variables when the same pattern of behaviour is fallowed repeatedly, i.e.

when seguencing is repetitively controlled.

We begin ‘with a very simple program: givem two positive integer
values A and B, a program has to be made that will compute (i.e. can cause
a computer to compute) the Grestest Commsn Divisor of A and B. Let us use

the notation GCD(A, B) far that value.

{Remark.We have restricted ourselves to positive numbers in order
to make lLife somewhat easier. Zerg is divisible by any positive integer D

(for 0 =0 * D), and there would be no objection, with B> 0, ta
GCD(C, B) = B .

But admitting zero as argument is askimg for trouble, because &cD(0, Q) is
clearly undefined! In order to avoid these complications, we restrict

purselves to positive arguments.)

For the sake of argument we request an algorithm in which no arithmetic
operations other than addition and subtraction will be used. How do we find

such an algorithm?

Well, there seem in this case to be two ways of attacking the problem.
The first one is more or less a direct application of the definition. Ore
could construct a table of divisors of A (includirg 1) and a table of
divisors of B {also including 1); as both A and B are finite and different
from zero, both tables contain only a finite number of numbers. From these
two tables of divisors one canm construct a third table of common divisors,

i.e. containing all the numbers occurring in both of them. This third table

EWD316 - 34

is non-empty (because it contains the number 1) and it is firite (because it
canngt be longer than any of the original tables). From this non-empty, finite
table we can select the greatest number and that will, by virtue of the way

in which it has been faund, be the Greatest Common Divisor.

We could do it along the lines just sketched (or at least use it as a
source of inspiration). In the current example, howsver, there is a second
line of attack because the GLD is & well-known mathematical function, "“Well-
known" meaning that a number of its groperties are known, If we can think of
sa meny of ite properties that they define the GCD ~i.e. that the GCD is the
anly function satisfying them— we might try to determine GCO(A, B) by

exploiting these properties. What properties can we think of7?

1) tCh{a, b) = GCD(b, a)
2) GCD(a, b) = GCD{a + b, b) = GCB(a, a + b)

i

%3,1) if a>b: GCD(a, b) = GCD{(a -~ b, b) = GCD(a, & = b)
2,2) if a=h: GCD(a, b) =a=1"b
3.3) if a<b: GCO(a, b) = 6CD{a, b - a) = GLD{b - a, b)

(We can think of ather properties, such as

4) farn>0: GCD(a', b") = &CD{a, B)"
5) for ¢ > 0: &ED{c * a, c * b) = c * GCD{a, b} ,

but they look less promising as they involve multiplication and we have to

restrict ourselves to the arithmetic operations of addition and subtraction.)

The first property states that GCD is a symmetric function. The second
ore states that the GCD of two numbers is equael to the GCD of one of them and
the sum, while the third property states this for the difference. Because we
want to restrict ourselves to positive numbers, we have dealt with the cases
a<hb and a > b separately. The case a = b, however, is very special: it isg

the only case in which the value of the GCD is given directly!

Relations 2, 3.1 and 3.3 tell us that the GCD of a pair of pumbers is
equal to the GCD of anpther pair of numbers. This suggests that we use the
"current state" to fix such a number pair; the algorithm can then try to
change these numbers in such a way that

firstly: the GCD remains constant

EwWD316 - 35

secondly: until eventually the two numbers are equal and rule 3.2

can be applied.

With the second requirement in mind, rule 2 does nat look too promising:
given two positive numbers, one of them can never be equal to their sum. 0n
the other hand, given two (different!) positive numbers, one af them, wviz.
the smallest, can be equal to their difference. This suggests that from

3.1 and 3.3 we use:

GCD{a — b, b)

%3.4' if a>b: GED(a, b)

3,5' if a<b: GCD(a, b) = GCD(a, b - a)

Now the mament has come to consider our first version of the program:

program 1:
begin inteqer a, b, gcd;
a:= A; b:= Bi
while s # b do
if a> b then a:= a — b
else bi=b - a;
ged:= a;

print(A); print(B); print(gcd)

(In this program we have used the well-known alternative connective

"if ... then ... else". The construction
"if inspesction then actionl glse action2”

causes one of two actions, either actionl or action? to take place. If
the inspection delivers the value true, actionl will take place {and action2
will be skipped); if the inspection delivers the value false, (actionl will
be skipped and) action2 will take place. We can describe the caonditional
conmective in terms of it:

"if inspection do action”

. : &
is equivalent to "if inspectjon then action glse nothing"” .)

EWD316 - 36

When we try to understand this program we should bear the following in mind:
While the typical use of variables manifests itself with the
program loop, the way to understand such a program implies
looking for the relationms between their values which remain

invariant during the repetitian.

In this example the invariamt relation P is

P: a>0 and b >0 znd GCD(a, b) = GCD(A, B) .

The relation P holds after initialization {for them a = &4 and b = b;

fram A> 0 and B > 0, relation P then follows).

The repeatable statement will only be executed under the additioral
condition a # b; i.e. either a < b or a > b. If a > b, then the new value of
a, viz, a = b, will again be positive and GCD(a, b) will remain unchanged on
account of 3.1'; if a < b, then the nmew value of b will again be positive
and GCD{a, b) will remain unchanged an account of 3.37, The invariance of

relation P i1s therefore established.

When the laop terminates, a = b is guaranteed to hold, GCD(A, B} =
GCD{a, b) = GCD(a, a) and an account of 3.2 the assignment "ged:= a" will
establish the net effect "ged:= GCD{A, B)".

To complete the proof we must demanstrate that the repetition will
indeed terminate. Whenever the repeatable statement is executed, the largest
of the two (different!) values is decreased by the value af the other which

is]IJCISitiVE; as a rBEult
> R
max(a, b)T: Hrax(a, b)T1

We alsu know that before the repetition max(a, b) = max(A, B) is finite;

from the invariance of the relation P (a> 0 and b > 0) we canclude that
max{a, b) > 0O

will continue to hold. All values being integer, the maximum number of times
the repeatable statement can be executed must be less than max(A, B) and
therefore the repetition must terminate after a finite number of repetitians,

And this completes the proof.

EwD316 - 37

Crce we bave this program, it is not difficult to think of others.
Reading program! we abserve that each subtraction is preceded in time by
two tests, first a £ b and then a > by this seems somewhat wasteful as the
truth of a > b already implies the truth of a # b. What happens in time is
that a number of times a will be decreased by b, then b will be decreased
a number of times by &, and so on. A program in which (in general) the

number of tests will be smaller is

program 2:
begin integer a, b, ged;
a:= A; bi= B;
while a # b do
beqgin while a> b do ai= a — b;
while b > a do b:=b = a
end;
gcd:= a;
print(A); print(B); print(ged)

end .

Exercise. Prove the correctness of program 2.
Exercise. Rewrite program 2 in such a way that the outer repeatable statement

contains only one loop instead of two. Prove its correctness.

Before goirg on, it is desirable to give 2 more formal description
of the kind of thearems that we use. (In the following I shall make use of

a formalism introduced by C.A.R.Hoare.)

Let P, P1, P2, ... stand for predicates stating a relation hetween
values of variables. Let S, Si, 52, ... stand for pieces of program text,
in general affecting values of variables, i.e. changing the current state.
tet B, Bl, B2, ... stand for either predicates stating a relation hetween
values of variables or for pieces of program text evaluating such a predicate,
i.e. delivering one of the values true or false without further affecting

values of variables, i.e. without changing the current state.

Then P1 {5} P2

means: "The truth of P1 immediately prior to the execution of S5 imples the
truth of P2 immediately after that execution of S". In terms of this formal-

ism we write down the following theorems. {Some readers would prefer to call

EWD316 ~ 38

anme aof them rather "axioms" or "postulates", but at present I don't parti-

cularly care about the difference.)

Theorem 1:
Given: Pt {51} P2

P2 {52} P3
Canclusion: P1 {s1; s2} P3

(This theorem gives the semantic consequences of the semicolon as connective.)

Thegrem 23

Given: B {s} non B
Conclusion: true {if B do s} non B

(Here "trup" is the condition which is satisfied by definition, i.e. the
conclusion that after the execution of the conditional statement "non B will

hold, is independent of any assumptions about the initial state.)

Theorem 3:

Given: (P and B) {s} P
Conclusion: P {if B do S} P

Thearem 4:

aiven: {P1 and B) {s1} P2

{P1 and non B) {s2} P2
Conclusion: P1 {if B then S1 else 52} P2
Theorem 51
Given: (P and B) {5} P
Conclusion: P {while B do S} (P and non B)

Remark: This thenrem only applies to the case that the repetition terminates,

stherwise it is veid.

Theorem 5 is one of the most useful theorems when dealing with loops.
The appropriate reasoning mechanism to deal with loops is mathematical in-
duction, but often the use of Theorem 5 (which itself can only be proved by

mathematical induction) avoids a direct use of mathematical induction.

We used Theorem 5 when proving the correctness of program 1. Here was

EWD316 - 3g

P: 2> 0 ard b >0 and GCD{a, b) = GCD{A, B) and
B: a [b .

We draw atiention to the fact that we could not show "P {5} P" but
only “(P‘gﬂg B) {SE P": for a and b to remain positive it was necessary to
know that initially they were different, (How is this with program 27) We
also draw attention to the fact that after terminmation, when we wished to
show that a = ECD(A, B), we did not only use the mild conclusion "P"™ but
the strong conclusien "P and ron B": we peed the knowledge that 2 = b

in grder to justify the application of 3.2.

With respect to termination orme often uses z somewhat stronger

theorem, the formulation of which falls outside the strict Hoare formalism:

Thearem 6:

Given: (P and B) {s} P
Conclusian: in P {while B da 5; the relation (P and B) will

haold immediately after each execution of the repeatable
statement that is not its last execution.
This theorem often plays a role when deriving a contradiction from the

assumption that the loop will not terminate.

There is an alternative form of repetition control which might be

represented by “repeat § until BY

{ather authors write "do S until B"); it is semantically equivalent to
"5; while pon B do 5"

(Instead of describing its semantics in terms of the other repetitive con-

rective, we could also have given a recursive definition in terms of itself,

vize "S; if non B do repeat S until B" .)
The differences with the while~clause are;

1) the termination candition has heer inverted

2) the repeatable statement is executed at least once.

Saometimes the repeat-clsuse comes in really handy and the text sometimes

gains in clarity when it is used. It should be used with great caution,a

EWD316 - 40

cinit ion which 15 shown by the pertinent
Thearem T
Giver: P {S} F2

(P2 and non B) {5} P2
Conclusion: P1 ’regeat 5 until B} (P2 and B)
Remark: This thearem only applies to the case that the repetition terminates,

otherwise it is void.

The greater complexity of the assumptions about B and 5 which have to
be verified reflects the additional care required in the use of the repeat-

clause.

Exercise. We now give three tentative alternative progrems (3, 4 and 5} for
the computation of GCD{A, B). Discover which of them are correct and which
are faulty by trying to prove their correctmess, If the program is incorrect,

construct am A=B-pair for which it fails.

program 3:
begin integer a, b, gcd;
at= A; b:= B;
repeat if a> b then a:= a - b

else b:i= b - a

until a = by
ged:= a;
print{A); print{B); print(gcd)

Erd

program 43
begin integer a, b, gcd;
at= A; bi= B;
repeat while a > b do a:= a =~ b;
while b > ado bi=b - a
until a = b;
ged:= a

H
- print(A); print(B); print(gcd)

EwD316 — 41

program 5z
begin integer a, b, gecd, x3
ai= A; bi= By
while a # b do
begin if a < b do begin x:= aj ai= bj bi= x end;
repeat a:= a ~ b yntil a < b

end;
gcdi= a;
print(A); print(B); print(gcd)

and

(Note. If any of the abave pragfams is correct, its occurrence in this

exercise is not to be interpreted as a recommendation of its Stylal)

Exercise. Prove that the following program will print in addition to the
greatest comman divisar of A and B the smallest common multiple of A and B

(bsing defined as their product divided by the greatest common divisor).

begin integer &, b, c, d, gcd, scm;
ai= As; bi= B; c:= B; d:= J;
while 3 # b do
begin while &> b do begin ai= a — b; di= d + c end;
while b > a dg begin bi= b - a; ci=c + d end

ged:= a3 sem:= c + d;
print(A); print(B); print(ged); print{scm)

end

Hint. Folliow the value of the expression a * c + b ¥ 4 . (Courtesy

Saftwere Sciences Holdings Limited, Landon)

* +

For a meaningful loop controlled by a while~clause we can make the

following further observations. Let is consider the loop "while B do 5".

Dur first observation is that the execution of the repeatable statement
must change the state. Suppose that it does not. If then the repeatable
statement is executed once, the predicate B (that was true pricr to its
execution) will still be true after its execution, so that the statement 5

will be executed yet another time; then the argument can be repeated and the

EWD316 = 42

met result is that the repetition wili not terminate. The only terminatiaon
occurs when B is false to begin with: then the statement S will be executed

zero times. This we don't call "a meaningful loep".

S0, execution of statement 5 changes the state: let us call "s" that
part of the total state that may be changed by the execution of statement S.
Here "s" can be regarded as the aggregate of variables whose values can be
affected by the execution of statement 5. Then our second observation is that
(ore or more variables of) s must be imvolved in the ﬁredicate B. If pot, 2
sirgle executian af the repeatable statement wouid imply infinitely many
(by the same argument as used in our previous observation). Treating "s"
as a generalized variable, we can express this explicitly by rewriting the

loop, using two funmctions of the generalized argument s:

"while B(s) do s:= (s)» .

This is the basic form of svery repetition which is ccntrolled by a
while—clause. Reading it, it is obvious that its bebaviour is undefined when
the initial value of s is completely undefined. In terms of progremming this

lezds to our third observation:

Every repetition controlled by a while—clause requires a
proper initialization af the variables involved.
{Although obvious, this rule is mentioned explicitly, because I have
seen many programmers forgetting to initialize properly. The rule is so
rigid that such am omission is not a mistake but a blunder.)

Let the initial state be denoted by s, and let the state immediately

0
after the i-th execution of the repeatable statement be denoted by s.3 let
the lcop terminate after the k—-th execution of the repeatable statement. Then

the fecllowing theorems hold.

Theorem 8:

Given Sq! the remaining successive values of s are given by the recurrence

relation s, = s(s,) for 0< i<k
i i-1 -
Thecrem 9:
In the sequence Sgr Syr tee s 5, MO two values (with different subscripts)

are equal.

EWD316 - 43

Theoram 1014
B(si) for all i satisfying 0K i<k and

non B(Sk) .

Thesrem & is fairly abvigus. It is mentioned, howsver, because it
shows that a repetition is an adequate tool for the evaluation of a recurrence
relation. Thecrem 9 is mentioned because 1t is sa aobwviously correct (although
I see at present no use for it.) Theorem 10 —alse called "The Linear Search
Thearem" -which is alsp fairly obvious, is a very important one, comparable
in importance to Thearem 5. It does not only assert that after termination
the state Sk will be such that EEE_B'isrvalid, it asserts that in all
previgus states s with i < k (if any) B did hald. This theorem is used in
many searching algorithms looking for the smallest number for which a
predicate B is false: by inspecting the numbers in the order of increasing
magnitude, the smallest becomes the first found., Theorem 10 tells us that
in that case a loap contrnlled by a while clause is a proper vehicle. (It
is not restricted to looking for a smallest number, it can be applied to

any (somehow) ordered set of values of some sart.)

Remark .We have called the last three theorems "obvious™. This is not meant
to imply that giving a reasanably formal praof for them is trivial. I did

it, but the resulting proofs were surprisingly cumbersome anc haring.

Finally, in Thearems 2, 3 and 5 we éiways have assumptiaons including
the truth of B priocr to the execution of S, Clearly we are not interested
in the net effect of the executian of S after an initial state in which B
is false. As a matter of fact, with such initial states the net effect of
an § will often be undefined. {A similar remark can be matde regarding Theorem
4.) In agther words: our statements 5 regarded as operators are often not
defined on the domain of all possible states, they are "partial operators"
and the predicates occurring in the clsuses ensure that they will not be
evaked inappropriately. This ohservation should temper our hope of increasing

computation speed by introducing more paralielism.

EwWD316 - 44

Programs carresponding to recurrence relatiaons.

Theorem 8 mentions successive states connected by a recurrence relation,
The meaning of this theorem is twofold: it can be used to prove assertions
about a given program, but also —and this, I think, is more important— it
suggests to us, when faced with the task of making a program, the use of =
while—clause in the case of a prohlem that inm its mathematical formulation
nresents itself as the evaluation of a recurrence relation. We are going to

illustrate this by a number of examples.

Comsider the sequence aof pairs a,, ©, given by
i i

for i = O 3y =1 (1)

e.=1=-h, with 0<b <2 {i.e. abs(co)<1)
: — *

for 1 > { a, = {1+ Ci—1) 3.4 {2)
(o4 "'I:2
i~ it :

Then 1im a, = 1/b .
i—eo *

Exerciss.Prove the last formula. (This has nothing to do with programming,

it is secondary schonl algebra. The clue of a prowf can be found in the

1

relation 1 1 + ci_

Z . = .)
1 ti_1 1 ci

It is requested to use this recurrence relstion to approximate the
value of i/b ; obvipusly we canmot campute infimitely many elements of the

a .+« but we can accept a as a sufficiently close

aol ai’ 2| k
(how close?) approximation of 1/b when <, is less (in absclute value)

than a given, small, positive tolerance named "eps", {This example is of

sequence

historical interest; it has bheenm taken from the subroutine library for
EDSAC 1, the world's first stored program controlled automatic computer.
The order code of this computer did not comprise a divide instructiorn andg
one of the methods used with this computer to compute guotients was based

on the above rscurrence relation.)

Theorem 8 talks about "a part, s, of the state space” and the loap
while B(s) dg s:= S(s)

asserts that after the initial state 557 the states s after the i—th

execution aof the repeatable statement will satisfy

EWD316 = 45

Si = S(Si_1) (3}
Qur recurrence relations (2) are exactly of the form (3) if we identify
the state 55 with the value pair ai, ci. That is, to span the part s of thes
state space we have to introduce two variables, for the purpose of this
discussion called A and C, and we shall denote their values after the i-th
executien of the repeatable statement Ai and Ci respectively. We associate

the state s, (as given by the values Ai and Ci) with the value pair a.s cy
i

by the relations A = a (4)

1 1

E_ = C,
1 1

(Pemember: en the left—hard sides the subscript "i" means "the value
af the variable after the i~th execution of the repeatable stafement™, on
tre right—-hand sides the subscript "i" refers to the recurrent sequences as
giver by (1} and (2). It would have been usual to call the two variables "a"
and "c" instead of "A" and "C", i.e. not to distinguish between the quantities
defined in the mathematical formulation on the one hand and the associated
variables in the pragrsm on the other hand. As this asseciation is the very
subject of this discussion, it would have been fatal not to distinguish

between them.)

Within the scope of & declaration "real A, C", it is haw a straightforward

task ta write the piece of program:

A= 1; Ci= 1 = by

while abs(C) > eps do

begin A= (1 + C)% A&
C:=C *C

The first line has ta create the proper state o and daoes so in
accordance with (4) and (1), the repeatable statement has the form, symbolically
denoted by "s:= S5(s)" —see the Note below— in accordance with (4) and (2),

and the condition guarantees that after termination

will hold with the proper value of k.

EWD316 - 46

Excrcise. Prove that the loop terminates.

Note. The symbolic assignment "s:= S{s)" has the farm of two assignments

A= {1 + C)* a;
L:=C *C .

With the initial condition A = a4 C= ;i the first assignment is

equivalent to

* a,

A= (1 + c._ 11

1
and after the first, but before the second assignment we have —gn account

£ {2}
° \2) 'A:B,, L =c, .
i i=1

We have the complete pair A = ass €= s only after the second assignment.
Thanks tc the explicit occurrence of the subscripts, the order of the two
relations composing (2) is immaterial, this in contrast to the two assignment

statements composing the repsatable statement, whose order is vital.

Exercise. In the same EDSAC 1 subroutine library the next scheme is used.

Consider the sequence of pairs 3,5 Cis given by

for 1 =0 3 = b
eg=1~b, withO<b<2 (i.e. abs(co) < 1)
for i > 1 a. =1+ .5 *%¥c, * a,
.. = 22 *:75 :12; ‘e) .
i i~1 i=1
Then 1im ai = b'5 .
i—co

Prove the last formula and make a program using it for the approximation of

the square root. The clue of a proof can be found in the relation

(1 =-c._)-’5 = (1 + .5 # Ci-1) * (1 = ci)-'5 .

i-i

Prove alsp the termination of the repetition in the program made.

Exercise. In the same EDSAC 1 subroutime library the mext scheme is used.

Corsider the sequence of triples inci, Siv X given by

EWD316 - 47

for 1 = 0 ineg = lag 2
S. = O
xq = 276 {with 1 < arg < 2)
for 1 >0
2 . .
y < = .5 * inc,
far xi_1 2 1nci 5 1ﬁc1_1
%1 T Sim
B
¥ = xi"1
2 . .
for x, > 7 ine. = .5 * inc,
i-1 — i i-1
s, =5, , t .5 % inc_
i i=1 5 -1
x. = 5 ¥ x| .
i i~1
Then 1im s, = loglarg) .
i—oo

Prove this relation and make a program using it to approximate the logarithm
of & valuye arg in the interval stated, (In this program "log 2") may be
regarded as a known canstant which, in fact, determines the base of the
logarithm.) The clue of a proof can be found in the invariance of the

relation log{arg) = S5 + inci * ng(Xi) /1lag2 .

Our next example is very simple; it is so traditicnal that we could
call it standard. (No self-respecting programming course omits it, it is
often the very first example of a loop; Peter Naur uses it in his article

"Proof of algorithms by general snapshots", 1966, BIT, 6, pp 310~316.)

Given a sequence of values

al1], a[2], a{3], ... , a[N] {with N >1)

end a variable called "max". Make a piece of program assigning to the
variable named "max" the maximum-value occurring in the sequence. (As

N > 1, the sequence is not empty and therefore the task makes sense; if

is not required that ang two values in the sequence differ from sachather,
the maximum value sought may occur mare than once in the sequence.) If he
welcomes the experience the reader is invited to try to make this piece of

program himself before reading on.

How do we defime the maximum value occcurring in a sequence of length

N far genersl N> 1 7 If we call "maximumk" the maximum value occurring among

EWD316 - 48

the first k elements a[I}, ces g a{k], then

1) the answer scught is maximumN
2) the values maximumk are given
for k = 1 by the base: maximum1 = a[1] (5)

appealing to the knowledge that the maximum elsment in a
sequence af length 1 must be the only element occurring in
the seguence
faor k > 1 by the recurrence relation:
maximum = MAX(maximumk_l, a[k]} (6)

k
assuming the knowledge of the function MAX of two arguments.

The recurrence relation (&) presents us with an additional difficulty

bkecause it is not of the form

=y = Stz)

because =via "a[k]"— the value k occurs on the right—hand side mot exclusively
in the subscript "k—-1". To overxcame this we use a trick that might be called
a method. If we call n the k=th natural number, then nk = k; the numbers

k
i satisfy the obvious recurrence relation nk =1+ nk_1 . We can now
rewrite the definition for the seguence of values maximumk in the form of
g defipition for the pairs Hk, maximumk:

for k = 1 n, =1

1 .
maximum1 = 3[1] (7)
= _
for k > 1 n, = 1+ =1
maximumk = MAX(maximumk_1, a[l + nk~1]) (8)

and now the recurrence relations are of the form si = S(si_1), the only
=trivial—- difference bheing that in Theorem 8 we started with i = 0 and
here with k = 1. The trick we called a method shows that we need a second

(integer) variable; call it "m". Our state s, will assaciate (with k = i + 1)

max, = maximum

k

The piece of program now becomes:
max = a[1}; mi= 1;
while m <N do begin mi=m + 1;
max:= MAX(max, a[m])

EWD316 - 49

Again the order of the two assignment statemenis is essential.

We have given the above pisce of reasoning and the explicit reference
to the recurrence relation af Theorem 8 because it shows a mechanism leading
to the conclusion that the part of the state space an which the repetition
operates needs to comprise an additicnal variable. Even a moderately trained
programmer draws this conclusion "intuitively" and from now onwards I shall
assume my reader equipped with that intuitian. Then -and only then!- there
is a much shorter path of reasoning thet leads to the program we found.

It does pot consider —"statically" so to speak- the sequence of wvalues

5 va. in the sense that it bothers about the values of the subscript

O? 51!
i in s,. It appeals directly to Theorems 5 and & and works in terms of

i
assertions valid (before and aFtBr) any execution of the repeatable statement.

The price to be paid for this is the duty to prove termination separately.

Given the base
k =1 maximum1 = a[?]
and the step

1<k <N 11'|a><3'_rnurnk = MAX(maximumk_% ’ a[k])

the programmer "intuitively" introduces two variables which he calls

"maximum®™ and "k for short and the relation to be kept invariant is

P 1<k <N and maximum = maxirnumk .
{Here any use of "maximum" and "k" stands for the current value of the
variable thus named, while "maximumk" stands for the value as given by the

recurrence relation. This double use of the same names is tricky but

programmers do it. 1 too.)

The pragram then consists of two parts: establishing relation P in
accordance with the base and repeatedly increasing k under invariance of

relation P, i.e. in accordance with the step.

The initialization
"maximumi= al1]; ki= 1M

establishes P (with k = 1), the repetition

EWD316 - 50

while k < N do

beqin k= k + 13

maximumi= MAX{maximum, a[k])

end

causes the repeatable statement to be executed under the combined relation

"B and P*, i.e.

k<N and 1 <k <N and maximum = max:i.mumk

which reduces tg

1<k <N and maximum = maximumk . (9)

In order to show that the execution of the repeatsble statement
under the initial condition (9) lesaves relation P valid, it is desirable
to distinguish between the values before and after its execution; now it
would be confusing to do so with subscripts (why?), therefore we'distinguish

the values after execution by primes.

Initially we have relatian (9); after the assignment kiz= k + 1 we
have the relation k' = k +1 and from the first part of (9), i.e. 1 < k <N,

follows 2 < k' < N, which implies
1<k'<N . (10)

The second assignment now becomes effectively maximum:i= MAX(maximumk, a[k’]),

resulting in the relation

maximum' = maximum . (11)

k!
Relations (10) and (11} cambinme to a replica of P, but now for the primed

quantities.

Terminaticn follows from the fact that each execution of the repeatable
etatement involves an effective increase of the integer values variable k.
After termination we have, according to Theorem 5, "P and mon BY, i.e.
1<k <N and maximum = maximumk and pon k < Nj
from the first ard the last term we conclude k = N and then from the middle part
maximum = maximumN

which concludes the proof.

EWD31& ~ 51

Exercise, Make 3 program effectively assigning "prod:= X * Y" with integer
X and Y, satisfying X> 0, Y > O

a) using only addition and subtraction

b) using in addition the boolean function "Ddd{x)", doubling and kalving

of & aumaer. {The so-called Egyptian multiplicatian,)

Exsrcise. Make a program effectively assigning “rem:= REM{ X, Y)" with
integer X and Y, X > 0, Y > 0, where the function REM{X, Y) is the remainder
after division of X by Y

a) using only addition and subtraction

b) using in addition doubling and halving of a number. Modify bath
pragrams in such a way that in additiuﬁ "quot:= QUUT(X, Y)" will take place.

(The so-called Chinese division.)

We conclude this section by an example aof the {standard) circumstance
in which a recurrence relation should not be translated blindly inte a lcop.

Given two sequences of values

x£1], x[2], sen x[N] and
v[1] v[2), .., vIN] with N> 0

make a program assigning to the becolean variable named "eg" the value trus
if x[i] = _y[i] for a2ll i satisfying 1 < i <N and the value falgs if in
that range a value far i exists such that x[i] # y[i]. (The seguences may

be empty, in that case "eq" should get the value true,)

How do we define equality of sequences of lemgth N for general N7
Again by means of a recurrence relation. Let eq, mean "no differerece occurs

amang the first i pairs"; then the sequence of values eq, is given by

for i = O gy = true
for 1 > 0 eq, = eq,_, and x[i] = y[1] .

The net effect af the program to be made should he eq:= Gy -

A blind tramslation inte initialization followed by repetition would
lead to
eg:= frue; i:= O;

while i < N do begin i:= 1 + ; eq:= {eq and x[i} = y[i]) end .

EWD316 - 52

Although the above program is correct, the following program, besides

being equally correct, is on the average much more efficient:

eq:= true; i:= O;

while i <N and eq do begin i:= i + 1; eq:= (x[i] = y[i]) end

because it terminates the repetition as soon as a difference has been found.

Exercise. Prove the correctness of the second program.

EWD316 - 53

A first example of step-wise pronram compesition.

The little examples dealt with su far are rot representative for the
programs that haves to be made: they are several orders of magnitude too small.,
A traired programmer "sees" them at a glance, he can think zsbout them without
pencil asng paper. They are aof the size of a paragraph, whils we have to
deal with programs of the size of a page, & chapter or a book and eventually
-tn quote A,Perlis~ with programs that no longer fit into a sirgle programmer’s
skull! The composition of such very large programs falls autside the scope
of this little menograph, but the very least thing we can do is to show the
reader how to arganize his thoughts when composing, say, page—size programs.
If in the following the reader thinks that I am too car=ful, he skould bear
the chapter—size programs in mind. (If he is stil) uncenvinced he should study
2 single page pragram made by a messy programmer: he will then discover that
ever a single page has room enough for a disgusting and imtellectually
Lnhealthy amaunt of unmastered camplexity!)

Here we go. Consider sequences composed of 1's, 2's and 3's whichk
cartain aorly pairs of different édjoining non—empty subsequences. Examplies
cf cood sequences are :

1

12

12312

212321 .

Examples of bad seguences are

it

12323131

321321352132 .

In all probability the list of goad seguences is infinite. The problem
is now: given that thers is at least one good sequence of length 100 (i.e.
cansisting of 100 digits), make a program gererating the beginning of this
list of good sequences in alphabetical order up to and including the first
sequence of length 100. (Alphabetical arder under the corvention that the
1 preeedes the 2 and the 2 precedes the %; the criterion can be translated
into a numerical one by putting a decimal point in front of the seguence and

then interpreting the sequence as a decimal fraction. With that convention

alphabetical order is the order of increasing magnitude.)

Ewn31ie - 54

I have used this example extensively in oral examinations. After some
initial skirmishes, most studernts discovered for themselves
1) that a had sequence could never be made into a guod one by sxtending
it, i.e. all good segquences are either a one—digit sequence or a aone-digit
extension of a good sequence
2) if sequence B is a good one—digit extension of sequence A, sequence
A precedes sequence B in the alphabetical order, i.e. a good sequernce is
follpwed by all its possible extensions
2) the alphahetical order requires that the good sequence A will first
be followed by its extensions starting with a 1 (if any), then by those
starting with a 2 (if any) and them by those starting with a 3 (if any).

These observetions lead to the follawing rule:

a good sequence should be printed and extended with a 1 as a next trial
sequence; from a bad sequence, terminal 3's {(if any) should be remcved and
the final digit (now # 3) should be increased by 1, giving the mext trial

sEquence.

The beginning of the list to be generated is:
i

12

121

1213

12131

121312

1213121

1213123

by searching the following list of trial seguences (omitting the anes marked

by *)

* 11
12
121

* 1211

* 1212
1213

12131

EWD316 - 55

* 121311
121312
121731 21

* 12131211

* 12131212

* 12131213

* 1213122
1213123

Many of them suggested a program of the following structure.

program 1:
SET SEQUENCE TO DNE AND LENGTH TO DNE;
repeat if G0OD then begin PRINT; EXTEND WITH ONE end
else ADJUST

until length > 100

in which the primitive "EXTEND WITH DNE" extends the given sequence with a

1 and the primitive "ADJUST" inereases the last digit by 1 after removal of
terminal 3's, if any. (For the aperatian "ADJUST" to be defined, the seguence
remaining after removal of terminal 3's must not be empty; this follows fram
the fact that the list to be produced is kmown to contain a sequence of

length = 100.)

A number of objections can be raised against a program made along the
lines sketched. One abjection is that at the beginning of the execution of
the repeatable statement the length will be < 100, and furthermore we krow
that the operation "ADJUST" will never increase the length; nevertheless
each adjustment is followed in time by a test on the length, and the first
ob’ection is therefore that these tests are superfluous. A more serious
ob’ection is to be found in the tortuous reasoning required to establish
that the end condition is all right. Instszad of stopping when for the
first time a solution mf length 100 has been printed, it will stop when
the first trial sequence of length > 100 has been generated. It is clear that
the above program will never preduce a solution larger than 100 because
such a long trial sequence will never be subjected to the test "GDROD". To
show, however, that it will stop after the production of the first solution

of length = 100 is much harder.

EWD316 - 56

A much nicer pragram is based upon the ohservation that we can regard

the empty sequence as a8 wvirtual solution which does nat need to be printed.

program 2:
S5ET SEQUENCE EMPTY AND LENGTH TQ ZERG;
repeat EXTEND WITH DNE;
while non GODD do ADJUST;
PRINT
wntil length = 100,

The objections raised are nmo longer valid. The true reason, however,
why thke above program is so much more attractive, is to be found in the
observation that we can mentally combine the first two statements of the

repeatable statement. The above version is a refimement of the more abstract

program 3:
SET SEQUENCE EMPTY AND LENGTH TO ZERD;
repeat TRANSFORM SEQUENCE INTO NEXT SOLUTIGN;
PRINT

until length = 100.

(Note. In programs 1, 2 and 3 the outer repetition could also have been

controlled by a while clause.)

Dhserve that here, in program 3, we have a level af description from
which the trial sequences have disappeared! It is a level of description
which can be understood in terms of solutions only. By distinguishing, i.e.
by mentally isolating the operator "TRANSFORM SEQUENCE INTO NEXT SOLUTION®
and postponing its refinement, we have separated the task af formulating
the corrsct criterion for termination from how the transition from one
solution to the next will be performed via a number of trial segquences
which may be rejected. Remembering the limited size of the programmer‘'s
skyll, this separation is a vital achisvement, as it enables us ta deal

with one thing at a time.

To show that all this is not just idle playing with words we shall
praceed from program 3 as our starting point, refining from there onwards.
By way of surprise we shall arrive at a refinement different from program

2, again without essentially changing the algorithm. (Althuugh I had used

this example extensively in examinations, the next version only occurred to

EwWD316 - 57

me when writing this very text! This is just to show that such abstract

programs are vitasl stepping stones in our process of comstructive reasonirg!)
To find this refinement we take a slep backwaids, asking ourselves

what enabled us ta make the transition from program 1 to program 2. It was

the introduction af the empty sequence as "wvirtual solution™. In program 1,

the first solution was given, while the others were generated; in program

2 and %, all solutions to be printed are generated by the same operstor

"TRANSFORM SEQUENCE INTC NEXT SOLUTICN™.

When refining this operator the trial sequences have to be generated,
and in program 2 we find that the criterior "GOOD" has to be applied to
trial sequances generated irm two different ways, either by "EXTEND WITH
ONE™ or by "ADJUST", Can we clean up our refinement by insisting that
all trial sequences to be tested are generated by the same operator? Yes
we can, by slightly changing the extension operstor and slightly generalizing

the gperatar "ADJUST", as in the following refinemernt,

TRANSFORM SEQUENCE INTD NEXT SCOLUTICN:
EXTEND WITH ZERD;

repeat ADJUST until GOOD .

Here "GOOD"™ stands for a rather complicated function; an alternative
form uses the booleen variable "good" and leaves us with the task of refining

the operstogr "SET GOGD".

TRANSFORM SEQUENCE INTO NEXT SOLUTION:
boolean gaods
EXTEND WITH ZERD;
repeat ADJUST; SET GOOD uyrmtil good .

{Note. In the above refinement the repetition is not to be controlled by a

while—clause. Why?)

Now the time has come ta make a decision on the representation of
"sequence". It has a property "length", now satisfying the inegualities
0 < length < 100 and is an ordered sequence of length digits. An appropriate
vehicle for representing this sequence is (part uf) a linear array of

integer varishles. We suggest declaring an integer array d[1:100], such

that at any moment the sequence will be represented by

EwD316 - 58

d(1], d[2], ..., diiength] .

We would like to point out that this is & well-motivated decision.

An alternative representation would have been
d[101 ~ length], d[102 - length], ... , d[100]

but with the latter convention all operations changing the length of the
sequence would imply moving the values upwards or downwards, whereas with

the suggested repressentation, the values being kept can "stay where they

are". When the chosen convention is made to apply to all sequences manipulated
{i.e. to solutions as well as to trial sequences) the following four
refinements are fairly.obvious. {As far as they are concerned, the chasen

representation is certainly adaquate.)

SET SEQUENCE EMPTY AND LENGTH TO ZERD:
length:= O

EXTEND WITH ZERD:
length:= length + 1; d[length]:: 0]

ADJUST:
while df length] = 3 do lemgth:= length ~ 1;
d[length]:: d[length] + 9

PRINT:
i:= 0; repeat i:= 1 + 1; printdigit(d[i]} until 1 = length; newline

where we have assumed the availability of the primitives “printdigit" and
"newline" for the transition to the beginning of the next line of output.

The only refinement which can still cause headaches is the operator "SET GDOD".

To investigate an arbitrary sequence is indeed & gruesome task, but
it betomes much easier if we exploit the circumstance that the ornly sequences
to be subjected to the test are trial seguences, and each trial seguence is
a one~digit sxtension of an (earlier) good sequence. As a result it can only
violate the condition if'its terminal element is included in one of the
subsequences, i.e. it has to be rejected as bad if there exists an m

(satisfying 0 <2 * m < length) such that the pair of adjoining "msequences"

dllength = 2 * m + 1], ... , d[length ~ m] and
dlength = m + 1], ... , d[length]

are egqual, Assuming the availability of the operator needed to compare the

EWD316 - 59

msequences of this pair (for arbitrary, giver m), nur first refinement nof

"SET GOOD" is

SET GOAD:
integer m;
good:= true; m:= 13
while 2 * m < length and geood do
begin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER;

mi=m + 1

or (pmb ably better)

SET GOOD:
integer m, mbound;

good:= true; mbound:= length div 2; m:= 1;

while m << mbound and good do

bsgin GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER;
mi= m + 1

end .

Here the operator div is the integer divide, rounding off the quotient
to the nearest integer towards zerm. The double condition for continuing the
repetition expresses that the imvestigation can be stopped as socn as an
equal pair has been found, as this is sufficient to establish its being bad.

We have seen this construction at the end of the previous section.

Question. An alternative form would have been

integer m;

good:= true; m:= length div 2;

while m > O and good do

begin GIVE G0O0D THE MEANING THAT THE MSEQUENCES DIFFER;
mi=m — 1

and .

Why do we propose to do the investigation in the order of increasing m?

Finally we refine the comparison of iwo msefquences

EwD31& - 60

GIVE GOOD THE MEANING THAT THE MSEQUENCES DIFFER:
integer firstend, k;
firstend:= length - m; k:= O;
repeat good:= (d[length - k} # d[firstend - k]);
k= k + 1

until k = m or good

again expressing that the comparison of the two msequences can be terminated

as soon as it bas been established that they differ somewhere.

Collecting the declarations and imserting the refinmements —keeping
their names as labels for explicative purpaoses~ we arrive at the complete
program as shown on the next page. The successive levels of detesil have been

indicated by systematic use af indentation.

* *

Exercise.

Given a linear array of 36 gositions, make & program generating all
ways (iFf any) in which these paéitians can be filled with zeros and ones
(ome digit per position), such that the 32 quintuples of five adjoining
positions presemt the 32 different patterns of five binary digits, restricting
ourselves to sequences starting with five zeres. C.Ligtmans has shown that
any such solution must end with four zeros. His argument is as follows. Each
solution must start with OQ0001..., because the pattern 00000 may occur
pnly once. Somewhere in the sequence the pattern 10000 must occur ance; as
this pattern can only be fallowed by a O ar a 1, its "follawing" quintuple
must be either Q0000 or 00001, presented slready by the first twe quintuples.
As a result the pattern 10000 cannot occur in the interior of the linear
sequence and therefore it must be the rightmost pattern. From Ligtmans'
observation it follows that we can close the ring, making the last four
zeros averlap with the four initial zeros. The different patierns are then
arranged in a cycle of 32 positions.

The patterns have to be generated in alphabetical arder.

Discussion and some hints.
1 take for granted that, given a sequence of %6 binary digits, the
boolean function. stating whether this sequence represents a solution is

computable, and that we could write an algorithm computing it. In principle

EWD316 - &1

putTmMau fyibuar = t TT3un ([T1]p)*tbrpiurad

pua

1
£

Lo+ ow

fpoob To w = y TTzun
Lo+ o =1
({3 - pumsitydp # [5 - y3buer]p) =:poob Feadsx
$p =13 fw — y3buaT =ipualsiTy
434410 SITNINDISW IHL L¥HL ININYIW ML Q00D 3AIY TIbAG

TF poob Pue punogqw = w BLTYM

‘g ATp yizbusT =:punoqu !} =:iw {3nag =:poob
1009
f1 + [wybuar]p =:[ysbustie

{1 - wabuay =:y3buat BF ¢ = [y3buaTip B{TuM

{] + T =1 Jeadax

pua

004 = y3buar TTIun
g =:

T

*INIHd

fpooB Tt3un

135

$1SNFQyY yeadal

o) H"ﬁ:pmcmauﬁ ‘1 + yibuar =:iyzbust

$0H3Z HLIM dN3LX3
INDILNIOS IX3N O4NI 3ININDIS WHOASNvHL Fesdad

t0 =1y3buay

10¥3Z 0L HiONIT ANV AldW3 3IN30R3S 135

fpuozsily *y fpunogu fw ‘r fy3zfust TEBejuT fpoch Usa{dog

mﬁoowuvwﬂ Aeize Tabsjutr utbaq

EWD316 ~ 62

we could writc a procgram generating all 36—digit sequences with five leading
zeras in alphabetical order and subjecting all these sequences to the test
just mentioned, thereby selecting those satisfying the test. This gives a
very unrealistic program and we shall not pursue it; we only remark that
generating the trial sequences in alphabetical order will ensure that the

solutions, when found, will be found in alphabetical crder as well.

The program to be made could be regarded as s derivation fram the
ridgiculous one sketched above, viz. by the introduction of some significant

short cuts. At present we shall not stress this relastion any further.

Instead of ganerating all 36-digit sequences and selecting from this
set, we aim at gemerating anly & much smaller set which is guaranteed to
contain all solutions. Let us define as Ylength of a sequence the number of
gquintuples it contains {i.e. length = number of digits - 4). Let us call a
sequence "acceptable” if no two different gquintuples in it present the same
digit pattern. With these definitions the solutions are s subset of the set

of acceptable sequences, viz. those with length = 32.

We do rot know whether there are amy solutions at all but we do know
that the set of acceptable sequences is non—empty (&.g. "00000"); we do not
have a ready-made criterion to recognize "the last solution" when we encounter
it; in our set of acceptasble sequences, hawever, we can designhate a virtual
last one {viz. ™00001"); when that ane is encountered we know that all
acceptable sequences with five leading zeros have been scanned and that no

further solutions will be found.

Summarizing, we know of the set of acceptable sequences:
1) it is non—empty and finite
2) we know a first member (™0000Q")
3) we know & virtual last member {™10000")

4) we can transform an acceptable sequence into the next acceptable sequence
5) solutions are all acceptable sequences satisfying the further condition

~ length = 32
6) no extension af a sequence that is not acceptable will be acceptabie.

The last property makes this problem mathematically speaking very

similar to the previous one.

EWD316 - 63

Hint. The test for acceptability can be speeded up cansiderably by tabulating

whirh quintuples are to be found in the sequence.

Remark. This problem is difficult and it will take you many hours to produce

a beautiful program. But these hours will be extremely well-spent,

EWD316 — 64

The shartest spanning subtree of a graphb.

I have chosen ihe fallowing example for a variety of reasans. Firstly,
although the fimal pragram is rather short, the solutian is far from trivial.
Secondly, our true subject matter is Mstructure" rather than straightforward
numerical material, and as a result, the decisions taken to represent the
information (using numerical values) are more manifest. Fimally it presents

us with a type of strategic decisions which are typical.

Twa points can be connected by one point—tg-point connection; three
points can be cornected with eachother by two point-to-point comnections;
in general N points can be fully intercﬁnnected by N-1 point-to-point
connections. Such a set of intercomnections is called a "tree"; the point—
ta-point connections that constitute the tree are called "its branches".
Cayley has been the first to prove that the rumber of possible trees between

N....
N points eguals N 2.

We mow assume that for each possible branch the length has been given.
Defining the length of a iree as the sum of the lengths of its branches, we
car ask for the shortest tree between those N points., (Far the time being we
assume that the given lengths are such that the shortest tree is unique. From
sur amalysis it will follow that no two branches of equal length is a

sufficient condition for this assumptinn.)

Note. The points dor't need to lie in a Euclidean plane, nor do the given

distances need to satisfy the triangle inegquality.

An apparently straightforward solution would generate all trees between
the N points, compute their lengths and select the shortest one, but Cayley's
theorem shows that this would become very expensive as N increases. The
following thewrem enables us to find the shartest tree with considerably less
wark. Givem a subtree af the shortest tree, then the shortest branch that can
be found hetween one of the points touched by this subtree and one of the
paints not touched by this subtree will be part of the shortest tree between

all N points.

This theorem is easily proved. Colour the branches of the subtree and

EWD31E ~ &5

all points corrmected by it red; colour all the remaining points blue and
colour all branches leading from 2 red point to a blue one violet. The
theorem asserts that the shaoriest violet branch is part of the shortest tree
as well. Call this shortest violet branch V and assume that it is not part
of the shortest tree T; we shall then canstruct a tree T' which is shorter
than T, %hus arriving at a contradiction. Add to the tree T the violet branch
Vi in the resulting graph the violet branch must be contaired in a closed
loop. As this vielet branch conmects a red point with a blue orme, it is
clear that, going arcund the loop, we must find at least one other violet
branch in this loop. Call this V! and remove V', The resulting graph has
again N-1 branches; it connects all N point {we have removed a branch fram

= loop) and therefore it is a2 tree comrmecting all N points. Call it 7',

From T' =7 +V = V' follows:
length(T') = length(T) + lemgth(V) - length(Vv') .
As V was the sortest violet branch, we have
length(V)'< length(V'),
sa that
length(T') << length(T)

i.e. the tree T cannot have been the shortest one.

The above theorem tells us that a red subtree of the shortest tree T
can he extended with a point and the branch leading te it: the shortest
vinlet branch and the blue point it leads ip can be coloured red. As &
result, if we can find a red subtree to start with, we can let it grow by
cme branch at a time. But it is very easy to start with a red subtree, viz.
the red subtree consisting of a single point (any point will da) amd na
branches. Starting from the subtree we can let it grow to the shortest tree
in N-1 steps, each step adding a new red branch and a new red point to it.

We can represent the framework of this algorithm as follows:

COLOUR ONE POINT RED AND THE REMAINING ONES BLUE;
while NUMBER OF RED POINTS <N do
beqin SELECT SHORTEST VIOLET BRANCH;

COLOUR IT AND ITS BLUE ENDPOINT RED

EWDZ16 - 66

As it stards, the main task will be "SELECT SHORTEST VIOLET BRANCH™,
because the number of vielet branches may be guite large, viz, k *(N = k)
where k = NUMBER DF RED POINTS. If "SELECT SHORTEST VIOQLET BRANCH" wers
an isolated gperation, there is not much that could be dore about it; in
the above program, however, the operaticn has te be performed N=1 times in
succession and the successive sets of viclet branches are strongly related:
they are the branches between red and blue points and each time only one
point changes its colour., We wauld like to explait this with the aim of
reducing the set of branches from which sach time the sheortest branch should
be selected: we are looking for a useful subset of the violet hranches. We
stlll don't knaw if such a really useful subset exists, but let us assume
for the moment that it can be found and let us call it "ultraviolet". If
such a set exists {each time) it is anly helpful provided that we have a
cheap way of constructing this subset, and our anly hope is to be found in
the past history of the computation, for instance the set of ultravialet
branches used the.previnus time. This suggests a program of the focllowing

structure:

COLCUR ONE POINT RED AND THE REMAINING ONES BLUE;
CONSTRUCT THE SET OF LLTRAVIDLET BRANCHES;
while NUMBER OF RED POINTS < N do
begin SELECT SHORTEST ULTRAVIOLET BRANCH;
COLOUR 1T AND ITS BLUE ENDPOINT RED;
ADJUST THE SET OF ULTRAVIOLET BRANCHES

end

where the set of ultraviolet branches should be defined in such a way that

1) it is guaranteed to contain the shortest violet branch

2) the set of ultravioclet branches is in general much smaller than the
set called simply violet

3) the operatign "ADJUST THE SET OF ULTRAVIOLET BRANCHES® is cheap, for

otherwise the profit we are trying to gain is lost.

Can we find such a definition of the conecept "ultraviolei"? Well,

for lack of further knowledge I can only suggest that we try.

Considering thzt the set of violet branches leading from the k red
points ta the N—k blue ones has k *(N - k) members snd observing criterion

1, two obvious possible subsets present themselves immediately:

EWD316 - 67

1) Make for each red point the sortest violet branch ending in it
ultraviglet. In this case the set pof ultraviolet branches has k
mMemne r's.

2) Make for each blue point the shortest violet branch erding in it
ultravialet. In this case the set of ultraviolet branches has N-k

members.

Qur aim is to keep the ultraviolet subset small, but we wan't get a
clue from their size: with the first cheoice the sizes will run from 1
through N-1, with the secand choice it will be the other way round. So, if
there is any chance of deciding we must find it in the price aof the

operator "ADJUST THE SET OF ULTRAVIOLET BRANCHES".

Without trying the variouz adjustments of the ultraviclet sets, there
is ore observation which suggests a preference for the second choice. In
the first choice k ultraviclet branches may lead from the red tree to the
same blue pocint; then we know a priori that at most one of them will be
coloured red, while with the second choice each blue point is connected in
one way anly to the red tree (fhe sum af the number of red and ultraviolet
branches is then constantly equal ta N-1) and it is possible that all
ultraviolet branches st a certain moment will be evemtually colpured red
—-in which case the adjustment operator was empty but for the removal of the
are made red. Therefore, let us try the second choice for the criterion
ultravionlet, (Initially this set comprises the N-1 branches leading from
the ane red point to the remaining N-1 blue ones, so that presents no

prablem.)

Cansider now that we have a red subtree R and that from the corres-
ponding set of ultravinlet branches {according ta the secand choice -1 shall
no longer repeat that qualificatiun) the shortest branch leading to the
blue point P and the blue point P itself have been caloursd red. The number
of ultreviolet bramches has beer decreased hy 1 as it should be. Are the
remaining ones the good ones? For each blue point they represent the
shortest connection to the red tree R, and they should represent the
shortest possible connection to the new red tree R + P. But this is settled

by means of a simple comparison for each blue point B: if the branch BP is

EwD316 - 68

sharter than thke ultraviolet branch conpecting B to A, the lastier is to be
replaced by the bramch BP —its colour 15 washed away and BP is made ultra-
viclet instead—; otherwise it is maintaired, as the growth of the red tree
with the point P did not provide a shorter way of conmecting B with the
red tree. As a fesult the cost of the adjustment operator -which has to
deal with N-k blue points— is a linear function of N and k {and not
quadratic as k * (N - k}), and the introduction of this concept of ultra-

vionlet is indeed accomplishing the savings we were hoping for.

Exercise. Convince yourself that the rejected alternative of the concept

"gltraviolet" is mot so helpful.

et us try to represent our algorithm inm its current stage of

refinement:

£OLOUR ONE POINT RED AND THE REMAINING ONES BLUE;

CONSTRUCT THE SET OF ULTRAVIOLET BRANCHES;

while NUMBER OF RED POINTS < N do

begin SELECT SHORTEST ULTRAVIOLET BRANCH AND CALL ITS BLUE ENDPOINT P;
COLOLR IT AND POINT P RED;
ADJUST FOR EACH BLUE POINT B BY COMPARING WITH THE BRANCH BP

end .

By now the time has come tao consider the representation of the
infarmation involved. We assume the N peints numbered from 1 through N, we

assume the length of the branches given by a two—dimensional array
real array distarce[1:N, 1:N]
such that for 1 <3i,j<N

distance[i, j] = distance[j, i] =

length of branch connecting tbhe points i and j.

The answer required is a tree of N-1 brenches, each branch being
identified by the numbers of its endpoints; the answer is an (unordered)

set of (unordered) pairs of numbers. We can represent them by two arrays

integer array from, to[1:N—1]

where for heach h satisfying 1 < h < N-1 the pair "fram[h], tn[h}"

EWD316 - 69

gives {the numbers af) the endpoints of the h—th branch. In our final
solublion the br?nches will be numbered (by h); the anly order thal makes
sense is the order in which they have been coloured red. The ohservation
made earlier that the total number of branches to be manipulated (red and
ultraviolet together) remains constant suggests that we store them in the

Same array:

if k = NUMBER OF RED POINTS
from[h], ta[h] will be red for 1 < h <k

from[h], to[h] will be ultraviolet for k < h <N .

The ultraviolet branches will be represented leading from a red point tc
& blue one, The array "length" has been introduced in order to reduce the

number of subscriptions to be carried out:
length[h] = distance[from[h], to[h]]

will hold (and will be restared immediately when temporarily invalid),

Point N is chosen as the initial point to be coloured red. "SELELT
SHORTEST ULTRAVIOLET BRANCH" is a straighforward search for a mimimum value.
"COLOUR IT AND POINT P RED" is done by an interchange in the three arrays
(if necessary), followed by an increase of k. In "ADJUST FOR EACH BLUE
POINT B BY COMPARING WITH THE BRANCH BP", h scans the violet branches,
to[h} will scan the blue points and len is used to store the length of

branch BP. The final program is given on the next page.

Exercise.
Let distance[i,j] be the distance from point i to point j in that
directign. As we may have one-way traffic, the relation
distance[i,j] # distance[j,i]
iz then permissible. Make a progrem finding in the graph the shortest path
leading from point I to point J. This is a difficult exercise, therefore

it is worth trying!

EwD3te — 70

PUa | 4 Y =iy fauTTMau

&

.Aﬁcuopvﬁcﬂua uﬁﬁxgeoumv#cﬂha Uibag Op N = Y 8rTgm §| =iy

paa [« g =iy fpum o =iy Jwory fuat Huﬁgggwm:mﬂ UThaq 4p [4]urbual > uat 3T H [y o3 ‘dleaueistp =iuat uthaq

TP N> U BLTOM

iy =1y

idg HONVHE 31 HEIM ONIWYdWOD AH d LINIOd 3n7E HI¥3 HO4 LSNCaY

S+ 3 =

uat Hum:CHEgﬁam:ma uﬁﬁcﬂegzum:mﬁ unﬁstvmcma uﬁxuzpmcma =:uaT

by H"m£:HEuDP mmLcHEuUP =[]0 umxgou =1y

fy =:[yutw]uozy ¢[yutwlwoay =:[5 juoxy ¢[x]uory =iy UTEaq Op yutw F 3 4T

(034 4 INIOd ONY LI HNO0T83
uﬁxcwEuou =:d

PUE | + 4y =iy YPUE y =iquriw 98 =IuaTUTW LRBSY OP UaTuTW > uaf mm.mngzvmcmﬁ =tuaT UTHag OPp N = Y B1TYM

§1 4+ % =iy umxuzpmcmﬁ SiuaTuetw N =tyuTw

id INIOJANZ 3NT8 SLT TTvd ONY HINYHE L3I0TAVHLTN (SILHOHS £J3738 UTDaq

OF N> 3TTYM

Pua | 4y =iy t[yn]esuerstp =:[yyibuar fy =:[ylez fn =:[y]uoxy TTBST OF N > Y BTTYM 1| =iy

‘id fyutw *y *y TabaiuT fuaTuTw *fuaT TEAI

:G3IHINVHE L3I0IAYHELTN 40 135 3HL LINHISNDD
Yy =iy
:3N7G S3IND ONINIVWIY 3HL GNY (034 LINIOd 3NOD ¥nN070D

nﬁ_fzuw; yibuat AeIIE TEaX uhvlznrg 03 ‘woiy AETIE Tabajur urbag

EWD316 ~ 71

The towers of Hanoi.

Given three pegs, numbered 1, 2 and 3 and a set aof N disks (N =>1)
of decreasing diameter and a hole in their centre. At the beginning the N
disks are all on peg nr.! in order of decreasing diasmeter, i.e. the largest
disk is at the bottom, the smallest is at the top side of the first peg.
The problem is to move this tower from the first peg to the third ore in a
number of "maves", where z "move" is moving one disk from the top of a peg
to the tep of arother peg with the restriction that a larger disk may never
be placad on top of a smaller one. The secand peg may be used as auxiliary

"store" for pegs which are "im the way".

Now, if we can solve this game for any two pegs far N = NO, we can

also solve it for N = NO + 1. Call

movetower (m, A, B, C)

tha set of moves that transports a tower of m disks from peg A (if necessary

via peg B) to peg C. The individual maves are of the form
movedisk(P, Q) .
The set of maoves
movetower (NO +1, A, B, O)
is the same as that of the successive moves af

movetower {NO, A, C, B)
movedisk (A, C)

movetower (NO, B, A, C) .

In words: first a tower of No disks is moved from A to B, using C as

auxiliary peg, then the N, + 1st disk is moved directly from A to C and

0

finally the tower of N,, that has been placed temporarily on peg B is moved

O,
to its final destination C, using A as auxiliary peg. As the tower consists
af the NO smallest disks, the presence of larger disks will not cause
violation of the condition of decreasing disk diameter. Moving a ocne-disk

tower (N, = 1) presents no difficulty, and as a result the puzzle has been

0]

solved. The questior posed to us, however, is to make & program generating

the diskmoves in the order in which they have to take place.

EWD316 - T2

Note. It is not realistic to demand the execution of this program for large
. N
values of N because the total number of moves required = 2 =~ 1., Prave this

and prove also that the puzzle cannot be solved in a smaller number af moves.

The fact that a move with N > 1 1s decomposed intoc three "smaller"
moves, suggests that we keep s list of maves to be done. If the first ane
to be done is simple, we do it; otherwise we replace it by its decompasition
and reconsider our obligations. In both cases, when we have g list of k
maves, anly the first to be made needs consideration , and while we process
it, the remaining k-1 moves remain as standing obligations. This suggests that

we introduce

mnvek, mave «sve y MOVE_., MOVE

k=1"' 2 1

to be done in the order of decreasing subscript, in the order from left to

right. If move, is simple, it is made, leaving

Kk

move ver moueg, move

k'=k=1"' 1

(indicating with k' the new value of k, the length of our list of standing

cbligatians) otherwise move, is replaced by three others, leaving

k

move' , move

1
K kD Kte1ok+1’ move;'_zzk, mnvek‘_sz_1, ces movee, move1 .

In both transformations the lower (i.e. later) k~1 moves have been

unaffected.

A move is given by four parameters, say

rn = number of disks in the tower to be moved
from = number of socurce peg

via = number of auxiliary peg

to = number of destination peg.

We can store these moves in four arrays "integer array n, from, via,
to [1:2*N-1]“. (Verify that the list of obligations is never longer than

2*N-1 moves.) The non—simple move (with N > 1), given in tabular form by

n o= from = via = to =

ks N A B C

is tao be replaced by the triple

EWD316 - 73

0 = » TT3un
[FIE}
T 4 =iy
Hepfern =:[x]o3 e Juoay =:3]eTa {[gen]or =i[3Juoxy fegpq]u =:[y]u
fA]ox =:f l4x]or t[uoxy =:[44 Juoay ty =i {43]u
Hajern =:[g+d]or [4]os =:[ge]eTa {[>]uwoxy =:[gsfJuory ¢y - [3]u =:[g+x]u UTBaq

asto

bLo— o =i
H[%Jer ‘[]uoay)ystpancu UThag
uaqy | = [x]u 3T Jesdax

f) =1y ¢ H"ﬁpmav e H"ﬁﬁumﬂ> ‘1 H"ﬁPMEUHm N u“ﬁpuc

uﬁ_lz*mu_g o} ‘eta fwoil ‘u ReIze Isbajut ¢y Isbajutr uibag

EWD316 - T4

n' = from' = via'! = to' =
k'=2 = k: N=1 B A C
k'=1 = k+1; 1 A (R) c
k' = k=23 N-1 A o B

in which the top line replaces the original one, while the mext two lines
are new, (In the middle line the element "via" has been put between brackets,
as it is immaterial; the program on the previous page leaves that value

unaffected.)

Remark, In the program we have nat described the details af the operation
"movedisk (A, B)". If it prints the number pair A, B, the solution will be
printed; if the machine is coupled toc a mechanical hand which really moves

disks, the machine will play the game!

The reader is strongly advised to follow the above program himself
for a small value of N (say: 4} so as to see haw the value of k goes up
and down. The reader is also invited to check carefully the "shunting" of
the values N(-1), A, B and C when a non-simple maove is decomposed into
three simpler ones. This check is a painful process, so painful that
everyore who has done it, will only be tos willing to admit that the
above program is rather ugly. The above program has been included with the
aim of making him more appreciative of the elegaerce of the so-called

"recursive solution” which now follows.

begin procedure movetower (integer value m, A, B, E);

begin if m = 1 then mavedisk (A, C)
else
begin movetowsr (m=1, A, C, B);
movedisk (A, C);

movetower (m=1, B, A, C)

end;

movetower (N, 1, 2, 3}

o
3
o.

EWD316 - 75

[t introduces an operator named "movetower™ with faur {integer valued)
parameters, moving a tower of length m from A via B to C. In terms
of this operator the fimal program collapses inta a single statement as
given in the last line, viz., "movetowsr (N, 1, 2, 3)“. All that is given
im frent af it (lines 2 to 8) describes this operator in terms of a little
program, little because the operator is allowed to invoke itself. The
definition of the operator (the so-called "procedure bndy") follows cur
ariginal anslysis of the game exactly. Recursive procedures -i.e. procedures
that are allowed to invoke themselves— are such a powerful tool in pragramming

that we shall give some more examples of them.

Remark. Scme of the more old-fashioned programming languages do rot cater
for recursion. Programming courses based on such programming languages
often contain many examples that are only difficult because the recursive

solutian is denied to the student.

EWD316 ~ 76

The problem of the eight gueens.

The problem is to make a program generating all configurations of
eight queens an a chess board of 8 * B squares, such that no gueen can
take any of the others. This means that in the configurations scught no
two queens may be on the same row, on the same column or an the same

diagonal.

We don't have an operator genmerating all these configurations: this
operator is exactly what we have to make. Now a (very gensral!l) way to
attack such a problem.is as follows. Call the set of configurations to be

generated A; look for a greater set B of configurations with the following

praperties
1) set A is a subset of set B
2) given an element of set B, it is not tao difficult to decide whether

it belongs to set A as well

3) we can make an operator generating all elements of set B.

With the aid of the generator (3) for the eiements of set B, the
elements of set B can then be generated in turn; they will be subjected to
the decision criterion (2) which decides whether they have to be skipped
or handed over, thus generating elements of set A. Thanks to (1) this

algorithm will produce all elements of set A.

Three remarks are in order.
1) If the whole approach makes sense, set B is not identical to set A
and as it must contain set A as a (true) subset, it must be larger. Never-—
theless, it is advised to choose it "as small as possible®: the more elements
it has, the more of them have to be rejected according to criterion (2).
2) We should look for a decision criterien that is cheap to apply, cr
at least the discovery that an element of B does not belong to A should
(Un the average) be cheap.
3) The assumption is that the germeration of the elements of set B is
easier than a direct generation of the elements of set A. If, nevertheless,
the éeneration of the elements of set B still presents difficulties, we
repeat our pattern af thinking, re—apply the trick and look for a still

larqger get C of configurations that contains B as a subset etc. (The

EwD316 -~ 77

careful reader will ohserve that in the course of our solution this will

indced happen.)

Above we have sketched a very general approach, applicable to many,
very different problems. Faced with a particular problem, i.e. faced with

a specific set A, the problem is of course, what to select for our set B.

In a momemt af optimism orme could think that this is an easy matter,
thinking of the following technigue. We list all the mutually independent
congitions that our elements of set A must satisfy and omit orme of them.
Sometimes this works but as a gemeral technique this is too naive; if we
want to see its shortcomings, we only need to apply it blindly to the

prablem of the eight queens. We can characterize our solutions hy the

caonditions:
1) there are 8 queens on the bpard
2) no two of the queens can take eachather.

Omitting either of these conditions gives for the set B the alternatives
B1: all configurations with N queens on the board such that no two queens
can take eachother
B2: all configuratians of 8 gueens on the board,
But both sets are so ludicrously buge that they lead to utterly impractical

algorithms. We have to be smarter. How?

Well, at this stage of our considerations, being slightly "at a loss”,
we are rot so much cancerned with the effieciency of our final program but
rather with the efficiency of our own thought processes! So, if we decide
ta make a list of the properties of saolutions, in the hope of finding a
useful clue, this is a rather undirected search; we should not invest too
much mental energy in such a search, that is: for a start we should restrict

purselves to their obvicus properties. Let us go ahead.

a) No row may contain more that one queen; 8 queens are to be placed

and the chess board has exactly B rows. As a result we can conclude that
each row will contain precisely one gueen.

b} Similarly we conclude that each caolumn will contain precisely one

gueen.

EWD316 - 78

c) There are fifteen "upward" diagonals, each of them ceontaining at most
one gueen, i.e. 8 upward diasgonals cantain precisely ore gueen and 7

upngrd diaganals are empty.

d) Similarly we conclude that 8 downward diagonals are accupied by one
queen and 7 are smpty.

) Given any non—empty configuration of gqueens such that no two of them
r£ay take eachother, removal of any of these queens will result in a configur-

ation sharing that property.

Now the last one is a very important property: in our earlier
terminology it tells us something about any non—empty configuration from
set B1. Conversely it tells us that each nan—empty configuration from set
Bl can be generated {(in N different ways!) by extending a configuration
from B1 with N-1 gueens by another gueen. We have rejected Bl because it
was too large, but mavbe we can find a suitable subset of it, such that
each non-empty configuration is a one~queen extension of anly one other
configuration from the subset. This "extemsion property" suggests that we
sre willing to consider configurations with less than 8 gueens and that we
woudld like ta farm a new ccmfigﬁratian by adding a gqueen ta an existing
configuration ~a relatively simple aperation presumably. Well, this draws
gur attention immediately to the generation of the elements of the {still
mysterious) set B. For instance: in what order? And this again raises a
question to which, as yet, we have not paid the slightest attention: in
what order are we to generate the solutions, i.e. the elements of set A?

Can we make a reasonable suggestion in the hope of deriving a clue from it?

Priaor to that we should ask ourselves: how do we characterize
solutions ance we have them? To characterize a solution we must give the
positions of 8 gueens. The queens themselves are unordered, but the rows
and the columns are not: we may assume them to be numbered from O through 7.
Thanks to property a), which tells us that each row cﬁntains precisely one
queen, we can arder the gueens according to the number of the row they

occupy. Then each configuratian of 8 gqueens can be given by the value of
the integer array x[0:7], where

x[i] = the number of the column accupied by the queen in the i-th row.

Each solution is then "an B-digit word" (x[O] s x[?]) and the only

EWD316 - 79

sensible arder in which to generate these words that I can thimk of is the

alphabetical order.

Note. As a consequence we apen the way to algorithms in which rows and
columns are treated differemtly. At first sight this is éurprising, because
the original problem is completely symmetrical in rows and columns., We
should be glad: to consider asymmetric algorithms is exactly what the abave

considerations have taught us!

Returning to the alphabetical order: now we are approaching familiar
ground. If the elements of set A are to be generated in alphsbetical order
and they have ta be gererated by selecfing them from a larger set B, then
the standard technique is gemerating the elements of set B in alphabetical
order as well, and to produce the elements of the subset in the order in

which they occur in set B.

First we have to generate all solutions with x[O] = 0, then all with
x[O] = 1 etc.; of the solutions with X[O] = 0 those with x[1] = 0 (if any)
have to be generated first, thén those with x[i] =1 (if any), then those
with x[1] =2 {(if any) etc. In other words: the queen of row O is placed
in column O -say: the square in the top left cormer— and remains there
until all elements of A {and B) with queen O in that position have been
generated, and only then is she moved one sguare to the right to the next
column. fFor each position of gueen O, gueen 1 will walk from left ta right
in row 1 -skipping the squares that are covered by queen O—; for sach
combined position of the first two queens, queen 2 walks along row 2 from

left to right, skipping all squares covered by the preceding queens, etc.

But now we have found set B! It is indeed a subset of B1: set B

consists of

all configurations with one queen in each of the first N rows, such

that no two gueens can take eachother.

Having established our choice for the set B, we find ourselves
immediately faced with the task of germerating its elements in alphabetical

order. We could try to do this via an operator "GENERATE NEXT ELEMENT OF Bv

what would lead to a program of the following structure:

EWD3i6 - 80

INITIALIZE EMPTY BOARD;
repeat GENERATE NEXT ELEMENT OF B;

if N = 8 do PRINT CONFIGURATION
until B EXHAUSTED

but this is nat attractive for the following two reasons.

Firstly, we don't have a ready—made criterion to recognize the last
element of B when we meet it, and im all probability we have to generalize
the operator "GENERATE NEXT ELEMENT OF B" in such a way that it will produce
the indication "B EXHAUSTED" when it is applied to the last "true" element
of B. Secondly, it is not too obvicus how to make the operator "GENERATE
NEXT ELEMENT OF B": the number of queens arn the board may remain constant,

it may increase and it may decrease.

So that is not too attractive. What can we do about it? As long as
we regard the sequence of configurations from set B as a single seguence,
not subdivided into s succession of subsequences, the corresponding program
structure will be the single loop as in the program just sketched. If we
are looking for an alternative program structure, we must therefgre ask
ourselves: "How can we group the sequences of configurations from set B

into a succession of subsequences?".

Realizing that the sequence of caonfigurations from set B has to be
generated in alpbabetical order, and thinking of the main subdivision in a
dictionary =viz. by first letter—, the first grouping is obvious: by

position of queen Q.

Generating all elements of set B -for the moment we forget about the
printing of the elements that belong to the subset A as well- then presents

itself in the first instance as

h:= O

repeat SET QUEEN ON SQUARE H;
GENERATE ALL CONFIGURATIONS WITH QUEEN O FIXED;
REMOVE QUEEN;
hi= h + 1

until h = 8 '

where the operations SET QUEEN and REMOVE QUEEN pertain to row zero, i.e.

EWD316 - 81

the first free raw or the last occupied raw respectively.

But now the guestion repeats itself: how do we group all configurations
with queen O fixed? We have already given the answer: in arder of increasing

coilumn position of gueen 1, i.e.

repeat if SQUARE H1 FREE do
begin SET QUEEN ON SQUARE H1;
GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED;
REMDVE QUEEN
£end;
hli= K1 + 1

until ht = 8

where, again, SOUARE FREE and SET QUEEN pertair ta the first free row and
REMOVE QUEEN pertains to the last occupied row.

For "GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED" we could
write a similar piece of program and so on: irserting then inside eachother
would result in a correct program with some eight nested loops, but they
would all be very, very similar. To do so has two disadvantages:

1) it takes a cumbersome amount of writing

2) it gives a program solving the problem for a chess board of 8 * 8
squares, but to solve the same puzzle for a hoard of, say, 10 * 10 squares
would require a new (still longer) program. We would like to avoid this by

exploiting the similarity of the loops.

Then we have to arnswer two guestions:
1) can we make the loops exactly identical?

2) can we then prafit from their similarity?

The two exceptional cycles are the outermost one and the irmermost
one. The outermast one is different because it does not test whether the
next square is free. Therg is, however, no objection to inserting this test:
as it is only applied when the board is empty it is guaranteed to give the
value true, and we can given the outermost cycle the same form by inserting

the conditional clause

Ewp316 - 82

if SQUARE H FREE do .

The innermost cycle is exceptional in the sense that as soan as B8
queens have been placed an the‘board, there is no point in gemerating all
configurations with those queens fixed, because we have a full bopard.

Instead the configuration has to be printed, because we have found an element
of set B that is also an element of set A. We can map the innermost cycle

and the embracing seven omes upon eachather by replacing the line "GENERATEM

Y i BOARD FULL then PRINT CONFIGURATION
else GENERATE ALL CONFIGLRATIONS EXTENDING THE CURRENT ONE.

By now the anly difference between the eight cycles is that each
eycle bhas ta have "its private h". By the time that we have reached this
stage, we can give an affirmative answer to the second guestion. The
sequencing through the eight nested loops can be provoked with the aid
af a recursive procedure, "generate" say, which describes the cycle orce.

Using it, the program itself collapses into

INITIALIZE EMPTY BDARD;

generate

while "generate" is defined recursively as follows:

procedure generate;
benin integer hj
hi= Oy
repeat if SQUARE H FREE do
begin SET QUEEN ON SQUARE H;
if BOARD FULL then PRINT CONFIGURATION
Else generate;

REMOVE QUEEN

end;
hg= b + 1
until h = 8

Each activation of "generate" will introduce its private local

variable h, thus catering for h, h1, h2, ... that we would need when

EWD316 - 83

writing 8 nested loops inside eachother. SQUARE H FREE and SET QUEEN DN
SQUARE H agair refer to the first free row, the aperation REMOVE QUEEN +o

the lest occupied row.

Our program —although correct ta this level of detail- is not yet
complete, i.e. it has not been refimed up to the standard degree of detail
that is required by our programming language. In our next refirement we
should decide upon the conventions according to which we represent the
configurations on the board., We have already decided more ar less that

we shall use the

integer array x{0:7]

giving in order the column number occupied by the gueens. We need a separate

convention to represent the number of queens on the board. Let us imtroduce

integer n,. such that

n = the number of gueens on the board

x[i]

for 0 < i < n: the number of the column occupied by the qusen

in the i-=th row.

The array x and the scalar n are together sufficient to fix any
configuration of the set B, and those will be the only ones on the chess
board. As a result we have na logical need for more variables; yet we shall
introduce a few more because from a pracfical point of view we can make
good use of them. The problem is that with only the above material, the
analysis of whether a given square in the next free row is uncovered is
rather painful and time-~consuming. Here we can look for a standard technigue,
zalled "trading storage space versus computation time". The pattern of this

technique is as follows.

In its most simple form we are faced with a computation that reqularly
needs the valus of FUN(arg) where "FUN" is a given, computable function
defined o7 the corrent value of orne or more stored varisbles, collectively
called “érg", In version 1 of a program, only the value of arg is stored and
the value of FUN{arg) is computed whenever needed. In version 2, an additianal
variable, "fun" say, is introduced with the sole purpose of recording the

value of "FUN{(arg)" corresponding to the current value of "arg".

EWD316 - 84

Where version 1 has
ALYI= o0 (i.e. sssignment to arg)
version 2 has (effectively)
argi= ...; fun:= FUN{arg) ,
thereby maintaining the validity of the relation

fun = FUN(arg) .

As a result of the validity af this relation, wherever version f
calls for the evaluation of FUN(arg), version 2 will call for the current

value of the variable "fun".

The introduction of this redundant additional tabulated material is
ane of the programmer's most powerful ways of improving the efficiency of

a program, Of course we need our ingenuity for its invention!

Quite oftern the situation is not as simple as that, and we come naow
to the secand reason for intraoducing such a variable "fun". Often it is
very unattractive to compute FUN(arg) from scratch for arbitrary values of
arg while it is much sasier to compute how the value of FUN(arg) changes
when the value of arg is changed. In that case the adjustment of the value
of fun is more intimately linked with the mature of the functional dependence
and the histery aof the variable arg than is suggested by

argi= ...; funi= FUN(arg) .

After this interlude on program eptimization via trading storage space
versus computation time, we return to our eight gueens. The role of "arg"
is played by the configuration on the board, but this value is not changed
wildly, oh no, the only thing we do to it is adding or removirg a gueen.
And we are laocking for additional tables that will assist us in the decisiaon
as to whether 2 square is free, tables such that they can be kept up to date

easily when & queen is added to or removed from the configuration.

How? Well, we might think about & boolean array of 8 * 8, indicating
for each sgquare whether it is free or not. If we do this for the full board,
adding a gueen implies dealing with up to 29 sguares; removing a queen,
however, is then a painful process because it does not follow that all

squares no longer covered by her are indeed free: they might be covered by

EWD316 - 85

cther queens., There is a standard remedy for this, viz, associating with
each square not a boolean variable but an integer ceounter, counting the
number of queens covering the square. Adding a queen means increasing up to
29 caunters by 1, removing a queen means decreasing up to 29 caunters by 1
and a squars is free when its counter is zero. We could do it that way,

but the guestion is whether this is not overdeoing it: 29 adjustments is

quite a lot.

Each square, in the freedom of which we are interested, covers a row
(which is free by definition, so we need mot bother about that) one of 8
eolumns {which must still be empty), ane of 15 upward diagonals (which mus t
still be empty) and aone of the 15 downward diagonals (which must still be

empty). This suggests that we should keep track af

1) the columns that are free
2) the upward diagonals that are free
3) the downward diagonals that are free.

As each column or diagonal is covered only once we don't need a
counter for each, but a boolean is sufficient. For the columns we introduce

a

boolean array cnl[O:?]

where "CDl[i] means that the i-th column is still free.

How do we identify the diagonals? Well, along an upward diagonal the
difference between row number and column number is constant; along a downward
diagonal their sum. As a result difference and sum respectively are the
easiest index by which to distirguish the diagonals, and we introduce

therefore

boolean array up[~7:+7], down[0:14]

to keep track of which diagonals are free.

The question whether square[n,h] is free becomes
col[h] and up[n—h] and dnwn[n+h] '

settiry and removing a queen both imply adjustment of three booleans, one

in sach array.

Without the tabulated material, REMOVE QUEEN would only consist of

EWD316 - 86

"= n — 1": now we would like to know her column number as well, i.e. we
replace it by REMOVE QUEEN FROM SQUARE H. In the final pragram, the variable
"k" is introduced for general counting purposes; statements and expressions

arTe lsbelled for explicative purposes.

This completes the treatment of our problem; the program, incidentally,

generates 92 cenfigurations.

By way of conclusion I would like to make up the bill: the final
salution is not very important (at least not more important than the
problem af the eight gueens). The importance of this section is ta be found
in the methods on which our final program relies, and the way in which we

have found them.

1) The final algorithm embodies a very general technique, so general that
it has a well-established name: it is called "backtracking". The configuration
cf set B can be thought of as plasced at the nodes of a hierarchical iree,
each node containing configuration € supperting the subtree with all the
nodes with configuratiors C as a true sub—configuration. At the root of the
tree we have the empty configuration {from which 8 different branches
emanate). At each next level we find configurations with one queen more and
at the top nodes {the leaves) we find the 92 solutions. The backtracking
algorithm generates and scars the nodes of this tree in 2 systematic manner.
I recommend the reader to became thoroughly familiar with the idea of
backtracking, because it can be applied when faced with a great number of

at first sight very different problems. (It is only when you recognize that
they all ask for a solutian by means of backtracking that the problems

become boringly similar to eachather.)

2) If the only thing the student gains from this secticn is his becoming
familiar with backtracking, he has learned something, but it was my intention
to teach him more: we shgwed all the considerations which together can lead
to the discovery of our method, this time backtracking. But it is my firm
conviction that, when faced with a different problem to be solved by =

different method, the latter may be discovered by a very similar method.

3) The final program contsined s recursive procedure. But backtrarcking

EwD3i1e — 87

is by no means the only algorithmic pattern that is canveniently coded with
the aid of recursion. The main point was the collection of considerations

leading to the disceovery that in this case recursion was s appropriate tool.

4) The major part of our analysis has been carried out before we had
decided how (and how redundantly} a configuration would be represented

inside the machine, It is true that such considerations only bear fruit, when,
finally, a convenient representation for configurations can be fourd. Yet

it is essential not to bother about *he representation before it becomes
crucial. There is a tendency among programmers to decide the (detailed)
representation conventions first and then to think about the algorithm in
terms of this specific representation, Eut that is putting the cart before

the horse. It implies that any later revision of the representation conventian
implies that all thinking asbout the algarithm has to be redone; it fails to
give due recognition to the fact that the only point in manipulating (such
groups of) veriables is that they stand far something else, configurations

in pur tase.

5) The trading of storage space versus computation time is more than &
trick that is useful in this particular program It is exemplar for many of
the choices a producing programmer has to make; he will work more consciously

and more reliably when he recognizes them as such.

Exercise. Write two programs generating for N> 0 all N! permutations of the
numbers 1 through N, one with and one without recursion, and establish the

carrectness of both programs.

Exercise. For O < N < M generate all integer solutions of the equations in
c[1] through c[N] such that
1y ef1]=z0
2) cli] > c[i—T] for 1 <i<N
3) e[1]+ . +e[N]=M .
Again, write two programs, orme without and one with recursion and

establish their correctness.

&8

EwD316 -

G = o TIUn | 4+ Y =:x {anag =i[3]umop {&ERIY = % Jdn 3BEdaT ¢

L= 0 =i
fg = TI3un | 4y =:y !3nig u“hxuﬁou 18adax i =iy
8]

*UHVYDH AldW3 3IZITWILINI

fpua

anIy H"ﬁxuﬂmu Yaniy n"ﬁxlcQQ: Yanxg H"ﬁ£+:gczau] = u =tu

FUTTMaU

‘H JHYNDS WOH4 N3N 3ADW3Y

‘tayezausb SST8

o= TTIUR | 4 3 =iy ([x]x)3urad FESdAT (g =iy
INDILYYA9IINOD LNIud UThag
usy3 (g = u) :71N4 auY0d 3T

t + u =tu fas1E} n"ﬁ£+:uc30n fastey n"ﬁzchQ: igsTEy H"ﬁ;Hﬁau fy H"ﬁCQX

*H 3HYNDS NO N33ND 135 UThaq
op ([Y+ulumop PUE [y-u]dn PUE [u4]T02) :3344 H JuvnbS IT Iesdex
$0 =iy fy I3bajut uTbaq
fajerausb SInpasoxd

“ﬁwwuogczcn .mh+"biua: .ﬁh"oHﬂnu Aexie UEaTo0q uﬁb"oux Feaie IaBagut !y ‘u Iaboajut utbag

EWD316 - 89

A rearranging routine.

The following example has been inspired by the work of C.A.R.Hgare

(Algorithm 64, C.A.C.M.).

The original problem was to rearrange the values of the elements of a

civen array A[1:N] and a given value aof f (1 < fFf< N} such that after the

rearrangement
for 1 <k <f Alk]<a(f]
for f <k <N Alk] = Alf] . (1)

As a result of this rearrangement A[f] equals the f—th value in order
of ron—-decreasing magnitude. We call the arrsy rearranged satisfying (1) "split
around ; we call the final value of A[f} "the splitting valus"., When the
array has been split it is divided into two halves, the one half —the "left-
Fang" half, say— containing the "small" values and the other half ~the "right-
hanc" half, say~ containing the large values, with the splitting value sand-
wicred in between. The pverall function of the algorithm is to move small
values to the left and large values to the right. The difficulty is that
for given f the final wvalue of A[f], i.e. aur criterion "small/large”, is

unknown to start with.

Hoare's imvention is the following. Select some rather arbitrary
criterion "small/large"; by maving small elements to the left and large elements
to the right, @ split will be established somewhere, around some positian.
If s happens to turn out = f, the original problem has been solved. The kerrmel
of Hoare's invention is the observation that in the other cases the original
problem can be reduced to the same problem, but now applied to one of the

halves, viz. to the left-hand half if f lies to the left of the split and to

the right—hand half if f lies to the right of the split.

Note.An alternative approach would be to sort the array completely: after
that A[f] will equal the f-th value in the order of non-decreasing magnitude,
But this can be expected to be rather expensive, for then we have established
relations (1) for all values of f. As a matter of fact we will arrive at o

rearranging routine which itself can be used for complete sorting, on account

EWD316 - 90

of the fact that, when a split around s has been established, A[s] has the
value it is going to have in the completely sorted array, and that —because
all elements to the left of it are < A[s] and those to the right of it are
> A[s]* completely sorting it could now be performed by sorting thersafter

the two parts independently.

We row focus our attention on the rearranging routire which is to cause

2 split in the array sectian

Alm] ... A[n] with 1 <m<n<N .

When we try to make such a routine we are immediately faced with the
choice of our criterion “small/large". One of the ways is to select an
arbitrary elemert fram the section, tc call all elements larger than it
"large", all elements smaller than it "small" and all elements equal to it
either "large" or "small", just what is most convenient (in the final arrangement
they may occur everywhere, either at the sﬁlit or at either of its two sides).
Let us therefore postpane the choice in this discussion for a moment, as

there is a chance that we can use our freedom to some advantage.

We are going to select one of the values in the array as the "splitting
value"; having chosen this value, its final position, i.e. the position of
the split, is umknown before the algorithm starts; it is defined when the
algorithm has beemn executed, in other words it is determined by the =svolution
of the computation. This suggests that we build up the ccllection of the
small values, starting at the left-hand end, and that of the large values at
the right-hand end, and continue deing so until the two collections meet
samewhere in the midd%e. To be more precise, we introduce two pointers,"i"
and "j" say, whose initial values will be "m" and "n" respectively, and
rearrange values in such & fashion that, when we cail the spiitting value

V, we ensure that

Ak]<Vform<k <ji and

Alk]>V for j<k<n .

‘Having chosen the splitting value, the algorithm will have the duty

of building up the collections of small and large values respectively from

Ewd316 - 91

the outside inwards. The algoritbm can start scanning, at the left-hand end
say, until a large element is encountered. If this occurs, this value has to
be removed from the collection of small values, i.e. it has to be added to
the collection of large elements. It is, as a matter of fact, the first
element whose "largeness" the algorithm has established: as we have decided
to build up the cellections from the outside inwards, this large value has
to be assigned tao A[n]. As we would like this position in the array to be
"free" —i.e, available to receive this first large value— the original

value af A[n] can be taken out of the array at the begirning and can be

chosen as the splitting valus V.

That is, we initialize i = m and j = n and "take out" A[n] ~by assigning
it %o +he variable V- thereby initializing the situation where scanning
starts at element A[i], while "j" points to the "hole" just made. When the
upward scan {under control of increasing "i") finds a large element, i.e.
when for the first time A[i] >V, this value is placed in the hole, now
leaving the hole in the place pwinted to by "i". From then onwards a downward
scan (under control of decreasing "i"} can operate until a small element has
been encountzred which will be placed in the hole at positian "i", leaving
the hole in the place pointed to by "j". Such upward and downward scans have
to succeed eachother alternately until i = j, i.e. until both point to the
hole at the position around which the split has been effectuated. Finally

the hole receives the value V which had been taken out at the beginning.

The above sketch gives an informal description of the essential features
of the algorithm, it by no means settles the structure of the sequential

program that will embody it.

I have tried a program in which the core consists of the program part
for the upward scan followed by the program part for the downward scan, The
first part consists of a loop with "i:= i + 1" in the repeatable statement;
the second part consists of a loop with "j:= j = 1" in the repeatable
statement. The two parts together then form the repeatable statement of an
outer loop. This program hecame very ugly and messy, the reason being that
termination may occur either because the upward scan or because the downward

scan is on the verge of scanning the hale. The reasoning needed to establish

EWD316 ~ 92

that the program did terminate properly became tortuous.

On account aof that expsrience [have tried the alternative approach,
one locp in which a single execution of the repeatable statement decreases

the difference "j - i" (i.e. the length of the unscanned array section) by 1,

by doing a step of the appropriate scan.

The decision to control the steps af both scams by the same repeaztable
statement calls for the introduction of amother variable; as we have ta
distinguish between only two cases, a boolean variable suffices, "up" say,

with thke meaning:

up = true means: the slgorithm is in the state of upward scan and j points
to the hole
up = false means: the algorithm is ir the state of downward scan and i

paoints to the hole.
The initializatiom has te be extended with the assignment "up:= trus"; after
the initialization the program continues with

"while i < j do perform the appropriate step" .

In the course af the action "perform the appropriste step”, the value of "up"
has to change its value whenever the hole is fiiled and the scanning direction

kas to reverse. Without any further detours [arrived at the follewing procedure:

integer procedure split{real array a, integer value m, n);

begin integer i, j; real V; boolean up;

it=m; ji= n; Vi= a[j]; up:= true;

while i << j da

begin if up then
if a[i] >V do begin &[i]:= a[i]; up:= false end
else
Aif V> & j] do begin s[i]i= a[j]; upi= true end;
Af up then i:= i + 1 else ji= j - 1
end:

a[j]:: V; spliti= j

EWD316 ~ 93

In its applications we shall only call the procedure "split" with m < n;

as it stands it also caters for the case m = n,

Exercise.Show that in a version of split that only needs to cater for m <n,
its internal repetition could have been cantrolled by a repeat until clause

as well.

Note. At the price of a larger number of subscriptions to be performed, the
text of the procedure can be shortened by not intraducing the separate variable

V, but by storing this value "in the hole", i.e.

V = if up then a[j] else a[i] .

As a result the splitting value zigzags to its final position. With the above
canvention the tests "a[i] > V" and "V >'a[j]" both become "a[i]3> a[j]", the

assigrments “a[j]:: a[i]" and "a[i]:: a[j]" both become the interchange
wi= a[i]; a[i]i= a[j]; alj)i= W

and the assignments "up:= false" and "up:= true" can both be represemted by
up:= non up .

The sbove considerations allow us to condence the procedure text into

integer procedure split(real array a, integer valus m, n);

begin integer i, j; zeal W; boolean up;

is=m; ji= n; up:= true;
while i < j do
begin if a[i] > &[] do
begin Wi= a[i]; a[i]:= a[j]; a[j]):= W; up:= non up end;

if up then i:=1 + 1 glse ji= j - 1

end;
spli‘t::_— J
end. (End of Note.)

We now return to our original problem: given an array A[1:N] and a
value f (1 < f < N), rearrange the elements in such a way that
for 1 <i<f Ali]<alf] and
for F<i<N Ali]>alf]
as a result A[f] will equal the f~th element in the order of non-decreasing

maghitude.

Ewp3ie - 94

The idea is to apply the operator "split" first to the original array
from 1 through N. The operator estahlishes the split somewhere, positian s
say. If the position of the split coincides with f (f = s}, we have reached
sur goal, otherwise the operator "split" is applied to one of the halves, viz.

to the left-hand half when f < s and %o the right—hand half when f > s =tc.

For this purpose we introduce variables p and g, satisfying

1<p<f<gsw

such that A[p] . A[qJ

will be the section of the array to which the split will be applied, as this

section is certain to contain the (future) value aof A[f].

If the split is found to the right of f (i.e. f <Is) the vperator has
to be applied to the left—hand half, i.e. g has to be reset to s - 1 and p
can be left unchanged; in the case £ > s, p has to be reset to s + 1 and g

can be left unchanged. We thus arrive at the routire

integer p, 9, S;

pr=1; g:= N;

repeat si= split(A, p, q);
f<sdoqr=s-1;

5)
- 4

f>s5do pr= 5 + 1

urtil f = s .

(Note, This program can call the routine "split" with m = n,)
prog

We may wish to improve upon this program: it is rather superfluous to
call the operator "split" with p = g: if the section consists of a single
element no (sigrnificant) rearramgement can take place: the split will be
argund its single element and both halves will be empty. The relation p < g
gives us therefore another necessary criterion of cantinuation, and we can
iook to s=e whether we can make it the sale eriterion for continuation. Because
we want to stick to p < f < g, the termination via the luck of hitting f with
the split, i.e. f = s, has to generate p = f = g. The following program

would achieve that result.

EWD316 - 95

integer p, 4, s;
pi= 1; gi= N;
while p<gqdo
begin s:= split{A, p, Q);
if f = s then begin p:= f; q:= f end

gelse if f<s then g:= s - 1 else p:= s + 1

From the shove program text it is cbvious that the operator "split"

will only be applied to sections of the array containing at least twa elements,

A more intricate use of the operator "split" is in complete sorting of
the array, observirng that after application of the operator "split" at least
ane element {viz. A[s]) has reached its final destination, while all aother
elements, although not necessarily in their final position, will be in the
correct half, so that complete sorting then cansists of sortirg both balves

indepenrndently.

The naive approach is a recursive

procedure sort(real array a, integer value p, q);

begin integer s;

5= split(a, p, 4);
if p<s - 1 do sart(a, p, s = 1);
if s + 1 < q do sort{a, s + 1, g)

end

h
such that the call scrt(A, 1, N)

will sort the entire array. Again it has been exploited that sorting an array
section is anly a necessary cperation if the section contains at least two
elements. (The routine "sort" may be called with a section of only one element,

but it will not generate such calls itself.)

We have called the above procedure naive and we have done so for the
following reasans. The operator "split" may divide the section offered to it
into two very inegual parts (e.g. when the originally rightmost element had

a near maximum value); as a result the maximum dynamic depth of recursive calls

EWD316 - 96

may grow proportionally to N, the length of the array section. As recursive
calls require an amount of storage space proportional to the dynamic depth,
the given program may turn out to be prohibitively demanding in its starage
requirements. This would lead to the conclusion that recursive sorting is
impractical, but for the fact that a slight rearrangement of the procedure
"sort" ensures that the maximum dynamic depth will nat exceed log2 N. In
view of the existence of such a sorting procedure we call the previous one

"maive".

We can guarantee that a sorting routine will not gererate a dynamic
depth exceeding 1092 N, if whenever it has called "split", it will only
prescribe a recursive call on itself for the sorting of the smallest of the
two halves. (In the case that the two halves are uf equal length, the choice
is immaterial.) Applying "sort" recursively to the smallest half only will
leave the other half unsorted, but this can be remedied by repeatedly applying
this only half-effective sorting effort to the still unsorted section. In the
body of "sort", two integers "pu" and "qu" are introduced, pointing to the

left- and right~band end of the still unsorted section.

procedure sart{real array &, integer value p, q);

begin integer s, pu, qu;
put= p; qui= gj
while pu < qu do
begin s:= split{a, pu, qu);
if qu = s <s - pu then
Eg_i_n__i_f_s+1<qu_g_clsort(a,s+1, qu); qu:=s - 1 end
else

begin if pu<s = 1 do sart(a, pu, s = 1}; put= s + 1 end

o
J
[u

Again, sort may be called with a section of a single element, but will

not generate such calls itself.

Exercise.Prove that termination of the loop is guaranteed to take place with

pu = qu. (This is less ocbvious than you might think!)

EWD316 - 97

Note. If, to start with, the elements of array A are ordered according to
non-decreasing magnitude, excessive depth of recursive calls has been prevented,
but the algorithm remains time-consuming (prcportional to Nz). This has given
rise to refinements of the procedure "split": instead of blindly taking the
right-most element of the array section as splitting value, same sort of

small search for a probably better approximation of the median value can be
inserted at the beginning of "split"; this element can be interchanged with

the rightmost element and thereafter split can continue as described.

