DFRO - O
EWD435 ~ O EWD435.html

;
(Unce.‘rcclva’. ,f.".r 4.”-,, o Primt

'

Assnciors: an effort towards accommodating potentially ultra-high

concurrency.,
—_—_—————

by
Edsger W.Dijkstra, W.H.J.Feijen and M.Rem

The following is a research proposal to investigate the linguistic
consequences when it is desired to program for a machine that could work
with an ultra-high degree of concurrency. The subject'has been suggested by
the advent of L5I-techingues that store large amounts of information on
essentially active comporents: once in the far future we may be invited
to think of algorithms instructing machines, such that the major part af
the logical manipulations will take place distributed all through "the

store".

It is felt that the above invitation could have a deep linguistic
cuﬁsequence: if the purpose of the whole game is a drastic reduction of
computation time, we may expect both & reduction of the number of "instructigrs™
to be executed and of the number af "instructions" to be written down. One
way of trying to achieve 2 similer goal is the irmtroducticn of large fancy
date-types, upon which numerous, powerful operations are defined, the
implementation of which allows a considerable -—"intermal", if you wish-—
concurrency. Efforts along those lines that we are aware of, are, however,
on this macroscopic scale still purely sequential, at each moment oniy a
very small number of such fancy opersnds will be actually involved in the
computatienal process. We would like ta go a considerable step further, at
each mament involving "all of the storage contents™ so to speak in the

activity.

To achieve the high degree of concurrency by asking the programmer to
regulate —~i.e., synchronize ete.—-— explicitly the co~operation between a
huge number of paossibly all different concurrent sequential processes, seems
a dead alley in the sense that the implied programming task will quickly
exceed our shilities. [t seems more attractive to look for a simplerand
systematic iastruction repertoire such thet each "instruction™ can interfere

in a homogeneous fashion with the total contents of the store. Its interference


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD435.html

DRFO - 1
EWD435 - 1

must be homogeneous, because otherwise there is no hope that we, as programmers,

will be able to manage the beast.

In order to avoid misunderstandings, we would like to point our that it
is mast emphatically not our intention to design a machine. Our "instructian
repertoire” can, uf course, be interpreted as the functional specificatians
of a machire; in choosing this instruction repertoire, however, we do not
feel ourselves obliged to restrict ourselves in such a way that the cor~
responding machine could be built realistically with current-day technology.
We are perfectly willing to consider functional specifications that would
make most hardware designers shudder at the thought of having to build
something meesting them! Gur primary concern is that the machine will be

manageable from the programmers point of view.

In one specific aspect we feel surselves obliged to be kind to the
poor hardware enginmeer or =~to put in another way—— to leave the door open:
our goal is to write down understandable programs under control of which a
highly cancurrent activity is possiblie, but not obligatory. An (vaious)
underlying desife is to arrange our programs in such a fashion that, in _
spite of the high potential concurrency, most of the in the mean time gevéldpéd
techriques for the programming of sequential processes remain applicable;
(We expect to maintain the "semicolons™ but would like powerful "statements"

in betwaen!)

As understandability is one of our primary concerns, we shall certainly
at the start allow ourselves the luxury that is characteristic of the so-
called "bigher programming languages™, viz. arbitrarily compliceted expressians
as components of our commands. In classical environments it is well=known
haw the evaluation af an arbitrarily complicated (algébraic) expression
can be broken down sucg that a (very) finite arithmetic unit can produce
the resvlt, For the time being we just hope that the “"breaking down" of our

expressions will not present unsurmountable logical difficulties.

* *

Highly -associative techniques seem indicated for two reasons. Firstly,

sssociative techniques are a'way of distributing am activity (viz. comparing)



DFRO - 2
EwWD435 - 2

all thraugh the store; secondly, the potential but not cbligatory COACUrrency
could very well make the storage management problem.as is cuased by a store
consisting of explicitly addressed cells, unmanageable. The desire to use
something that smells like "association" is a direct consequence of our
desire to broadcast.commands that all through the store will be processed

in a "homogeneous" fashion.

Having abolished addresses, we have to introduce "names", We assume the
machine able to deal with (values cf) variables of type "mame", we assume the
cardinality of this type to be high enough, "To deal with" will certainly
include the abiiity to test the equality of two names {as with all types!).
Assuming all entities to be referred to, to be indentifisd by mutually
distinct names, any relation between some of these entities can be represented
by a relatior betwszen their names. If “p1“ through "p100“ stand for the

distinct mames of 100 different persans, we may have the relations
fatherof(pi, p,) meaning} “pi is the father of p." and
J J
olderthan(pi, pj) meaning: "pi is older than pj" .
(We then know, for instance, that for any i and 3
fatheroF(pi, pj) = olderthan(pi, pj)

buth not the other way round!)

Instead of representing "all sorts of relations" —-such as "fatherof™
or "olderthan"-- we choose the more gemeral ——and neytrall—— technique of
considering different relations as "named entities" as well ~~e.g. named
by "fatheraf" and "olderthan" respectively--, leaving us with a single

universal relations ——which, therafore, can remain anonymous—— and represent

"(FathermF, P pj)“ and "(Dlderthan, Py pj)“.

(Note that we could also have "(implies, fatherof, olderthan)" ! This
is to stress that what from one point of view was regarded as "a relation",

from another point aof view can be regarded as "an argument".)

Such an ordered n~tuple of names is called: an "associon". The contents. -

of the store is considered to be an unordered set of (different) assoclons,



DFRO - 3
EWD435 - 3

The presence of am associon in store will be interpreted as the truth of the

universal relation applied to- its arguments, i.e. the members of the n-tuple,

Note 1. For the time being we shall not worry about arithmetic. If so
desired we could postulate -—i.e. bring into store— the following collection

of associorns:

(integer, zero) (nought, zero)

(integer, one) (suc, zera, one)

(integer, two) (suc, one, twa)
etc. etc.

as many as we like. (End of note 1.)

Note 2. Many relations are symmetric. As the possibilities are numerous, we
shall not make up our mind now. For the time being, we can assume that
whenever "(asoldas, Py pj)" ig in store, "(asoldas, pj, pi) will be in
store as well. (Alternatively, we could store besides the specific aessocion

"(asnldas, Py p.)" the general "(twosym; asoldas)“.) (End of note 2.)
J

Names occurring as elements of associons in store may occur as constants
in our progrem texts: this facility sha&lq enable us to refer to subclasses
of associons, e.g. all 3-tuples with “%a;herof" in the leading position, We
may expect that as the computation proceeds, new names have to be generated:
such @ new name will be different from any name occurring anywhere in an
asspcion in store or as a constant in our program. We can restrict the
rule to "different from any name occurring in an associon in store" when
reading in a program , in which the name "fatherof" occurs, gives rise to
an 1-tuple associon "(fatherof)" in store. As the creation of associons
must anyhaw be something that can be ordered by a program, its opening
statement could start by greating these associons, thereby reserving the

unigque meaning of its constanis.

* *

The presence of associons in store is interpreted as recorded truths
of facts. The evaluation of a computation is view as the creation of new

aésocions, recording the truths 'of facts that are implied by already known

triths. One truth is fairly universla, it is the truth of itrue"; this will



DFRO =~ 4
EWD435 ~ 4

be recorded by the irrevocable presence in store of the empty associon "()".

When we refer to "en empty store", this means "a store containing only "{)nnr,

Besides creating new associons, we shall alsa ——"to save storage spacel!"-—
cater for the destruction of associons. This may represent the abolishment
of records of truths still valid, but no lenger of any interest ——e.q, at the
end of a computation, an abolishment, very similar to the traditiomal block
exit-=, it may also represent that, from now onwards, a (transient) inter—
pretation is no longer valid. In all probsbility, this second need for
associon destruction will only emerge a8s soon as explicit repetitive mechanisms

are introduced.

Note. The insertion "to save storage space" was not made jokingly: destruction
of information seems characteristic of all non—trivial machine usage. (End

of not.)

Above, we have said that the creation of new associons would take
place as a recording of truths implied by already recarded truths. To do
Jjustice to this observation, we propose ——as a rather fundamental languege
construct—— to use the implication far that purpose. Creating the two

associons "(fathernf)" and "(Dlderthan)“ could take place by
() = (Fatherof) and (olderthan)

or by
() = (fatherof); (Y= (olderthan) .

The idea is that, upon completion of such a statement the "stated
implication"” tolds. If the implication holds to start with, it will act as
the empty statement, if not, however, it will react to it by creating missing
associons as mentioned at the right~hadn side and not by removing "{}".

(This is not unlike the asymmetry of the ALGOL 60 assignment statement "x:= y",)

Note. For the time being we assume that the semicolon indicates successive

execution in the usual way. (End of note.)

The Sheffer Stroke suggests, that we must be able to negate as well;

the negation of the left-hand side presents no probilem, the creation of



DFRO -
EWD435

(3

I
it

"(fatherof)“ could then also be prescribed hy the (lnhger) statement:
non (fatherof) => (Fatherof) .

If "(fatherof)“ is presert, the implication holds; otherwise, in order tg

make the right-hband side true, the assacion "(fathernf)" is created, whereafter
the implication holds. (That in the mean time, the left-hand side has become
false, is an admissible side—effect, that does not invalidate that the

implication still holds.)

The above suggests a motation for destruction of associons, viz.

precede by a negation at the right.hand side, e.g.

() => non (fatherof) and non (nlderthan)

ar () => nan (Fatherof); O => nan (Dlderthan) .

Just as the creation can he described witheut using the universal truth "()",

sa can the destruction, viz.

(Fatherof) => non (fatherof) .

* #*

In our previous examples the liberty we had when positive terms at the
right~hand side could be created or negative terms at the right-hand side could
be destroyed was, that as an equation, the implication had only ane solution.

But what, for constants "A"; "B" and "C", about
(n) = (B) ?

If initially (A) holds, and (B) doesn"t, an associon "(B)" will be created,
but when initially (A) is false, both presence and absence of (E) would
satisfy the implication. Viewing (B) as stating a fact that can be concluded
from the truth of (A), it is not allowed to create (B) ——establish that
truth!-- when (A) daes not hold. If, however, the truth of (B) had already
been established otherwise, it will remain so. In other words: if (A)

does not hold, (B) is left as it is and the little program:
(a) = (c); () = ()
it equivalen£ to (A) or (B) = (C) .

In other words (A) => (B) will only change the store contents, when initially



DFRO - 6
EWD435 ~ 6

(A) and nonm (B) rolds. As long as constant are involved, the above shows that
we do not need the gr as a connective at the left—hand side. The connective

or at the right-hand side, e.g.
(8) = (B) oz (€)

is still more misplaced: even if the implication is true, we may npot arbi-
trarily conclude either the truth of {B) or (C) or of both. For the time
being, the connective "or" will not be used anymore, (The introduction of or
at the right-hand side is certainly not a good way of introducing non-deter—

minacy. )

Also the and at the right-hand side should be used with precaution, such

as is shown by the trivial example
() = (A} and non (A) .

For the time being we shall therefore not use the and at the right—hand

side anymore,. (Time will sth!)

Our format for the left-hand side is ncw reduced to a conjunction of
terms, for the right-hand side to a single term, where a term is a possibly

negated associon.

(To be continued.)

18th July 1974



