,‘(A replacement of EWD416) | "v' EWD458 - O XA?HJeu

On _non-determinacy being bounded.

This is again a very formal chapter. In the chapter "The characterization

of semantics."

we have mentioned four properties that wp(S, R) , for any S
considered as a function of R , should have if its interpretation as the
weakest pre-condition for establishing R is to be feasible. (For non-deter-

ministic mechanisms the fourth one of these was a direct conseguence of the

second one.)

In the next chapter "The semantic characterization of a programming

language."

we have given ways for constructing new predicate transformers,
pointing out that these constructions sthld only lead to predicate trans-
formers enjoying the aforementioned properties (i.e. if the whole exercise
is to continue to make sense). For every basic statement ("skip"; "abort"
and the assignment statements) one has fo verify that they enjoy ﬁhe said
properties; for every way of building up new stétements from component
statements (semicolon, alternative‘and repetitive constructs) one has to
show that the resulting composite statements enjoy those properties és well,
in which demonstratio& gne'%ay assume that the component statements enjoy
them. We verified this up to and including the Law of the Excluded Mifacle
for ‘the semicolon, leaving the rest of the verifications as an exercise to
the readér. We leave it at that: in this chapter we shall prove a deeper
property of our mechanisms, this time verifying it explicitly for the al-

ternative and repetitive constructs as well. (And the structure of the latter

verifications can be taken as an example for the omitted ones.)



EWD458 - 1

Property 5. For any mechanism S and any infinite sequence of

predicates ”EO ’ C1 , C2 s, +++ such that
for r > 0O: C =¢ for all states (1)

we have for all states

wp(S, (_E_ r: T >0: C )) = (_E_ s: s > 0: wp(S, CS>) . (2)

For the statements "skip" and "abort" and for the assignment state-
ments, the truth of (2) is a direct consequence of their definitions,

assumption (1) not even being necessary. For the semicolon we derive

wp("s1; s2n, (E_r: r > 0: Cr)) =
(by definition of the semantics of the semicolon)
wp(S1, wp(52, (E_r: r. > 0: Cr))) =
(because Proﬁerty;S is assumed to hold for S2 )

wp(st, (E.r': r' > 0: wp(s2, Cr'))) =

(because S2 is assumed to enjoy Property 2, so that wp(SZ, Cr') £>-wp(52, Cr

and S1 is assumed to enjoy Property 5)
‘(E_s: s > 0: wp(51, wp(52, C->)) =
(by definition of the semantics of the semicolon)

(_E_ s: s > 0: wp("st; s2n, CS)) QED.

For the alternative construct we prove (2) in two steps. The easy.
step is that the right-hand side of (2) implies its left-hand side. For,
consider an arbitrary point X in state space, such that the right-hand"
- side of (2) holds, i.e. there exists a non-negative value, s' say,

such that in point X. the relation wp(S, Cs') holds. But because

'+

)



EWD458 - 2

[: , = (E r: r>0: Cr> and any S enjoys Property 2 , we conclude that
s ,

wp(S, (_(:l‘ r: r > 0: Cr))

holds in point X as well. As X was an arbitrary state satisfying the
right-hand side of (2) , the latter implies the left-hand side of (2). For
this argument, antecedent (1) has not been used, but we need it for proving

the implication in the other direction.

wp(IF, (E r: r > 0: Cr>) =
(b,y definition of the semat'wtics of the alternative constrgct)

BB and (A j: 1 < j <n: B =>Wp(5L.j, (E r: r > 0: c))) =
(because the individual SL'j are assumed to enjoy Property 5)

BBand (A j:'1 <j<n: B, = (Es: s>0: wp(SLj, cs))) ., . (3)
Consider an arbitrary state X for which (3) is true, and. let j'

be a value for j such that BJ_,(X) = true ; then we have im point X
(_E::_ s: s > 0: wp(SLj,, Cs)) (4)

Because of (1) and the fact that SLj’ enjoys Property 2, we conclude

that . ‘
wp(spj,, cs) =>wp(SLj', c

,)

s+

and thus we concl’ude‘ from (4) that in point X we also have
(E sft: s' >0: (A s: s >s': wp(SL, , C ))) . (5)
[ J' s

Ltet s'=s'(j') be the minimum value satisfying (5) . We now define smax
as the maximum value of s'(j') taken over the (at most n , and therefore
the maximum exists!) values j' for which .Bj,(X) = true . In point X then

holds on account of (3) and (5)



EWD458 - 3.

(by definition of the semantics of the alternative construct)

wp(IF, csmax) .

But the truth of the latter relation in state X implies there also
(_E_ st s > 0O: wp(IF', CS)) H

but as X was an arbitrary state satisfying (3) y for § = IF the fact
that the left~hand side of (2) implies its right-hand side as well, has
been proved, and thus the alternative construct enjoys Property ‘§ as well.

Note the essential role played by the antecedent (1) and the fact that a

guarded command set is a finite set of guarded commands.

Property 5 is proved for the repetitive construct by mathematical

induction.

Base: Property 5 holds for H, .

H(Er: r30:¢C) =
0= - T

(E r: r > 0: Cr) and non BB =

(_ﬁ sy s > 0O: CS and non BB) = \

(E s: s >0: Ho(C,)) QED.
Induc‘tion step: From the assump’tibn that Property 5 holds for Hk and
HO follows that it holds for Hk-H “

H 4 (E = x> 0: c) =

)

(by virtue of the definition of H ot

wp(IF, H<(E‘ r:«f‘>0: C )) or H (E rs T >0: C ) =
k= - r’—— 0= - ho

(because Propert_y 5 is assumed to hold for Hk and for HO)



EWD458 - 4

, t, . . : . ' =
wp(IF, (_E_:r: st >0 Hk(cr'))) ar (_E_ s: s > 0: HO(CS>) =

(because Pro;ﬁerty 5 holds for the alternative construct and Property 2 is
i

“enjoyed by Hk>

(E st s > 0O: wp(IF, Hk(CS))) or (_f_i__ S: s 20: HO(ES)) =

(_E__ s: s > 0: wp(IF, Hk(cs>><.£'£ HO(CS)) =

)

(b‘y virtue of the definition of Hk+r1

(E s: s >0: Hk+1((js)) . QED.

From base and induction step we conclude that Property 5 holds for

all Hk , and hence
wp(DD, (_E_ r: r > 0: Cr)) =

(by defiﬁitio_n c3f‘ the‘semantics of the ' repetitive construct)
(E ks k =>0: ‘Hk(_E__ r: r > 0: Cr)) =

(because Property 5 h;alds for all Hk )
(g k: k >0: (E st s >0: Hk(cs'))) =

(because this expresses the existence of a (k, s)—pair)
(Es: s>0: (E k: k>0 Hk([:s))) =

.(by definition of the semantics of the repetitive construcj:)

(E st s >0: wp(pO, cs)) . QED.

* *



EWD4AS8 - 5

Property 5 is of importance on account of the semantics of the repetitive

construct wp(DO, R) = (E k: k >0 Hk(R))

such a pre-condition could be the post-condition for another statement. Because

for k > 0Oz Hk(R) = Hk+1

(R) for all states ,
--this is easily proved by mathematical induction-- the conditions under which

Property 5 is relevant, are satisfied. We can, for instance, prove that in

all initial states in which BB holds
do B, = 5L.1ﬂ B, = St ... | B, - SL od
is eguivalent to

if B, - L, 132-»51_2{] []Bn_»SL i;

¥

do B, = sL, ] B, —»SL2|] S| B ~sSL od

(In initial states in which BB does not hold, the first program would have

acted as "skip', the second one as "abort".) That is, we have to prove that

(BB and wp(DO, R)) = (BB and wp(IF, wp(DO, R))) .

BB and wp(IF, wp(DU, R)) =

(on account of the semantics of the repetitive construct)

BB and wp(IF, (_E_ k: k >0: Hk(R)))

(because Property 5 holds for IF')

BB and (E s: s > 0: wp(IF, HS(R)))

(because (BB and HO(R)) =F )

BB and (E s: s >0: wp(IF, HS(R‘)) or Hy(R)) =

(on account of the recurrence relation for the Hk<R) )



EWD458 ~ 6

(R)) =

BB an (E s: 8 >0: H
- - s+1

(because (BB and HO(R)) =F )

BB and (E k: k > 0: Hk(R)) =

(on account of the semantics of the repetitive construct)

BB and wp(DO, R) : QED.

Finally, we would like to draw attention to a very different consequence
of the fact that all our mechanisms enjoy Property 5 . We could try to make

"

the program S: "set x to any positive integer" with the properties:

\ -
a) wp(S, x >0) =T

b) (A s: s >0: wp(S, 0 <x <s) = F) .

Here property a) expresses the requirement that activaticn of § is guaranteed
to terminate with x equal to some positive value, property b) expresses -that
S is a mechanism of unbounded non-determinacy, i.e. that no a priori upper

bound for the final value of x can be giVen. For such a program - 9

, we

could, however, derive now:

T = Wp(S, x > O)

wp(s, (_E_ r: r > 0: OSx<r))

(E s: s > 0: wp(s, 0<x<s))

(gs: s > 0O: F)
= F

This, however, is a contradiction: for the mechanism §: "set x to

-

any positive integer" no program exists!



EWD458 - 7

As a result, any effort to write a program for "set x to any positive

integer” must fail. For instance, we could consider:

go on:= true; x:= 1;
do go on - x:= x + 1

H go on - go on:= false

This construct will continue to increase x as long as the first alternative

is chosen; as soon as the second alternative has been chosen once, it terminates
immediately. Upon termination x may indeed be "any positive integer" in the
sense that we cannot think of a2 positive value X such that termination with

x = X is impossible. But term@hation»is ﬁoﬁlguaranteed either! We can @nfdrcg

termination: with N  some large, positive constant we can write

go on:= true; x:= 13
do go on and x < N - x:= x + 1

ﬂ go on - go on:= false

but then property b) is no longer satisfied.

The non-existence of a program for "set x to any positive integer"
is reassuring in more than one sense. For, if such a program could exist, our
definition of the semantics of the repetitive construct would have been subject

to doubt, to say the least. With

S: do x >0 - x:1= x -1

[ x<0-"set x to any positive integer”

=]
[n

our formalism for the repetitive construct gives wp(S, T) = (x EjO) ,- while



EWD458 -~ 8

1 expect most of my readers to conclude that under the assumption of the
existence of "set x to any positive integer" for x <O termination would
be guaranteed as well. But then the interpretation of wp(S, T) as the weakest
pre-condition guaranteeing termination would no longer be justified. But when

we substitute our first would-be implementation:

S: do x >0 - x1= x ~ 1
H x <0 - go on:= true; x:= 1;
A

do go on - x:= x + 1

H go on - go on:= false

wp(S, T) = (x EjO) is fully correct, both intuitively and formally.

The second reason for reassurance is of a rether different nature: a
mechanism of unbounded nonfdeterminacy bqt yet guaranteed to terminate would
be "able to make within a finite time a choice out of infinitely many possibilities:
if such a mechanism could be Formulated-ie our programming language, that very
fact would present an unsurmountable barrier to the possibility of the im-

plementation of that programming language.

Acknowledgement. I would like to express my great indebtness to John C.Reynolds

for drawing my attention to the central role of Property 5 and to the fact that
the non-existence of a mechanism "set x to any positive integer" is essential
for the intuitive justification of the semantics of the repetitive constrect.
He is, of course, in no way to be held responsible for any of the above. (End

of acknowledgement.)



