On one-sided smoothing of event sequences.

We consider a finite number of events E_i (i from 0 through N) occurring at moments t_i ($i > j \Rightarrow t_i > t_j$). The problem I found myself faced with was how to define a continuous function $f(t)$ that could be interpreted as "the event frequency at moment \(t \)." (I encountered this problem when trying to discover a strategy for deciding how much primary store should be allocated to independent programs in a multiprogrammed environment when for each program a "target page fault frequency" had been decided.)

A possible definition of the event frequency is in terms of the Dirac function:

$$f(t) = \sum_{i=0}^{N} \delta(t - t_i)$$

(1)

Which has the obvious advantage that it satisfies

$$\int_{-\infty}^{\infty} f'(t) \, dt = N+1$$

(2)

but the equally obvious disadvantage of severe discontinuities, which makes the comparison of $f_0(t)$ and $f_1(t)$—two different frequencies corresponding to different values of the parameter—rather difficult. Hence our desire to smooth the data. The smoothing, however, had to be one-sided.
in the sense that the smoothed value \(f(t) \) may at any moment \(t \) only depend on the set of values \(\xi \) with \(\xi \leq t \). In order to make a sensible choice among the wealth of possibilities for \(f(t) \) we should impose upon \(f(t) \) as many "sensible" constraints as we can think of. To start with, properly (2) seems a good choice. The next one is that we should realize that frequencies -- as usually understood -- have a dimension "time\(^{-1}\)," i.e. if we consider a next sequence of events \(E_\xi \), occurring at moments \(\xi = \alpha \), and define the corresponding frequency \(f'(t) \) for that second event sequence, then

\[
f'(at) = \frac{1}{a} f(t)
\]

(3)

should hold. Property (3) is not in conflict with requirement (2), for

\[
\int_{-\infty}^{+\infty} f'(t') \, dt' = \int_{-\infty}^{+\infty} f'(at) \, d(at) = \int_{-\infty}^{+\infty} a \cdot f'(at) \, dt = \int_{-\infty}^{+\infty} f(t) \, dt = N+1
\]

Reasonable as requirement (3) may seem, it is (for finite sequences) too much to hope for: if \(b=0 \), the relation (3) will not hold for \(E_\xi \leq E_\eta \), for how are we going to guess "a"? Therefore, we must loosen.
it and can only require (3) to hold asymptotically for \(t > t_c \) with sufficiently large \(i \).

Relation (2), however, still stands rather firmly. Because in (2) we have only used
\[
\int_{-\infty}^{t} \lambda(t) \, dt = 1
\]
we could consider functions \(w_i(t) \) such that
\[
w(t) = 0 \quad \text{for} \quad t < 0 \quad \text{(4)}
\]
and
\[
\int_{0}^{\infty} w(t) \, dt = 1 \quad \text{(5)}
\]
and replace (1) by
\[
f(t) = \sum_{i=0}^{\infty} w_i(t-t_i) \quad \text{(6)}
\]
where (4) does credit to the one-sidedness of the required smoothing, (5) guarantees (2) and (6) makes the whole definition invariant for shifting of the origin. The question is whether we can choose the \(w_i \) in such a way — satisfying (4) and (5) — as to approximate (3) at least asymptotically.

A reasonable first guess — corresponding to fading out of the past in an exponential way — for \(w_i(t) \) is with \(k_i > 0 \):
\[
w_i(t) = 0 \quad \text{for} \quad t < 0
= k_i \cdot e^{-k_i t} \quad \text{for} \quad t > 0 \quad \text{(7)}
\]
where we can try to adapt \(k_i \) — on account of past
history, if any - towards a better approximation of (3).
I called (7) a first guess, because we also wanted
a continuous function \(f(t) \) and with (6) and (7),
\(f(t) \) is discontinuous for any \(t = t_i \). A continuous
function would follow from the proper linear compositum
proper in view of (4), (5) and \(w_i(t) = 0 \) -

\[
w_i(t) = 0 \quad \text{for } t < 0
\]

\[
= \left(e^{-h_i t} - e^{-h_i t} \right) \frac{h_i + k_i}{h_i - k_i} \quad \text{for } t \geq 0
\]

(8)

and now we are free in the choice of both \(h_i \) and \(k_i \),
provided that they are both positive and different
from each other. I am severely tempted to
restrict myself to

\[
h_i = c \times k_i \quad \text{with } c \neq 1 \text{ and } c > 0
\]

(9)

the reason being that both \(h_i \) and \(k_i \) are of
dimension "time\(^{-1}\)" and that I cannot forget
my target (3).

* * *

In order to come to grips with the constant \(c \)
I studied (omitting subscripts "\(i \)"") according to (8) at (9)

\[
W(t) = k_i \frac{c}{c-1} \left(e^{-kt} - e^{-ckt} \right)
\]
and tried to determine c so as to minimize the maximum value of

\[
\frac{c}{c-1} \left(e^{-kt} - e^{-ckt} \right)
\]

(I wanted my ripples as smooth as possible.) As this led to the unacceptable value $c=1$, I took the limit for $c \to 1$ and found — and this is my final suggestion —

\[
w_c(t) = 0 \quad \text{for } t < 0
\]
\[
= k_c^2 t e^{-k_c t} \quad \text{for } t > 0
\]

Also (10) has the property that \(\int_0^\infty w_c(t) dt = 1 \).

* * *

The next thing to decide is, how to choose the value k_c. A constant value for k_c seems in view of (3) out of the question, because k_c has the dimension of a frequency. Apart from initial difficulties, it seems reasonable to choose k_c proportional to \(f(6_i) \) i.e.

\[
k_c = d * f(6_i)
\]

To get some feeling for a reasonable value
for \(d \) we consider \(f(t) \) for \(t \geq 0 \) as results from an infinite sequence of events that have occurred at \(t = 0, -1, -2, -3, \ldots \) etc; for all passed events we may assume the same value \(k_e = k \) and we find for \(f(t) \), according to (6) and (10)

\[
f(t) = k_0 \sum_{i=0}^{\infty} k_0 (t + i) e^{-k(t+i)}
\]

which, indeed, satisfies \(f(0) = f(1) \) as was to be expected.

Note: I summed the sequence and found

\[
f(t) = \left(\frac{k_0^2 e^{-k t}}{1 - e^{-k}} \right) \left(t + \frac{e^{-k}}{1 - e^{-k}} \right)
\]

(End of note.)

The functions (10) have all one maximum, viz. at \(t = k^{-1} \). We would like to attribute the maximum of \(f(t) \) for \(0 \leq t \leq 1 \) to the term with \(i = 0 \) (i.e. the last event), for \(i > 0 \) all the terms should be decreasing functions of \(t \) for \(t > 0 \). We can expect the smoothest maximum of \(f(t) \) if it is in the neighbourhood of \(t = \frac{1}{2} \) and this suggests \(k \) in the neighbourhood of 2 and

\[
d = 2
\]
For, because in the average \(f(t) = 1 \), we know that \(f(0) = f(1) < 1 \), therefore with \(c = 2 \) we shall find \(k < 2 \) and the term with \(c = 0 \) will reach its maximum at \(t < \frac{1}{2} \). Because the contribution of the remaining terms is a decreasing function of \(t \), this will be compensated and \(f(t) \) will find its maximum at \(t_0 < t \).

Note. Using I sliderule I have investigated the consequences of the choice \(c = 2 \). Salvo errore et omissione I found for \(k = 1.616 \), \(f(0) = f(1) = 0.868 \) as minimum value for \(f(t) \) and \(f(0.41) = 1.105 \) as maximum value. Anyone that would like to rely on these figures should reestablish them in a more reliable manner. I only mention these results because they represent the outcome of an hour's work and give some impression of how smooth \(f(t) \) becomes in the case of equally spaced events. If it were of importance, I would try slightly smaller values of \(c \) as well. (End of note.)

19th February 1975
Floraanstraat 5
NUENEN - 4565
The Netherlands

prof. dr. Edsger W. Dijkstra
Burroughs Research Fellow