Copyright Notice

The following manuscript

EWD 573: A great improvement

is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 217–219 of

Reproduced with permission from Springer-Verlag New York. Any further reproduction is strictly prohibited.
A great improvement.

After my return from my last trip the first thing W.H.J. Feijen en M. Rem showed me was a much improved definition of "wdec", for which they gave the credit to my colleague F.E.J. Kruseman Aretz. In [1] I had written:

"More specifically: we shall use the notation \(\text{wp}(S, R) \), where \(S \) denotes a statement list and \(R \) some condition on the state of the system, to denote the weakest pre-condition for the initial state of the system such that activation of \(S \) is guaranteed to lead to a properly terminating activity leaving the system in a final state satisfying the post-condition \(R \)."

For a well-chosen programming language the article continues by defining how for any given \(S \) and \(R \) the pre-condition \(\text{wp}(S, R) \) is derived. One page later, when dealing with a repetitive construct and its termination, [1] continues:

"Let \(t \) denote some integer function, defined on the state space, and let \(\text{wdec}(S, t) \) denote the weakest pre-condition such that activation of \(S \) is guaranteed to lead to a properly terminating activity leaving the system in a final state such that the value of \(t \) is decreased by at least 1 (compared to its initial value). [...] The relation between \(\text{wp} \) and \(\text{wdec} \) is as follows. For any point \(X \) in state space we can regard \(\text{wp}(S, t \leq t_0) \) as an equation with \(t_0 \) as the unknown. Let its smallest solution for \(t_0 \) be \(\text{tmin}(X) \). (Here we have added the explicit dependence on the state \(X \).) Then \(\text{tmin}(X) \) can be interpreted as the lowest upper bound for the final value of \(t \) if the mechanism \(S \) is activated with \(X \) as initial state. Then, by definition, \(\text{wdec}(S, t) = (\text{tmin}(X) \leq t(X) - 1) = (\text{tmin}(X) < t(X)).""

Kruseman Aretz's definition is

\[
\text{wdec}(S, t) = \text{wp}(S, t < t_0)^{t_0}
\]

where the notation \(R^x_y \) is used to denote a copy of the expression \(R \) in which each occurrence of the variable \(x \) is replaced by \(y \) (or by \(y \) if necessary).

Example. Let \(S \) be

\[
\begin{align*}
\text{if} \quad \text{true} \rightarrow & x := x - y \\
\text{end} & \text{true} \\
\text{true} => & x := x - z \\
\text{fi}
\end{align*}
\]

and let \(t = x \).
Then --see [1]-- we have:

\[\text{wp}(S, t < t_0) = \]

\[(\text{true or true}) \land (\text{true } \Rightarrow \text{wp}("x := x - y", x < t_0) \land (\text{true } \Rightarrow \text{wp}("x := x - z", x < t_0) = \]

\[\text{wp}("x := x - y", x < t_0) \land \text{wp}("x := x - z", x < t_0) = \]

\[(x - y < t_0) \land (x - z < t_0) . \]

Hence \[\text{wdec}(S, t) = \text{wp}(S, t < t_0)^{t_0}_t = (x - y < x) \land (x - z < x) = y > 0 \land z > 0 \]

This is much simpler than my original treatment. Analogous to the first five lines, we would have to derive first

\[\text{wp}(S, t \leq t_0) = (x - y \leq t_0) \land (x - z \leq t_0) . \]

Then we would have to find the smallest solution for \(t_0 \) satisfying that equation --and that is not a very standard operation!--; in this case we would find

\[\text{tmin} = \max(x - y, x - z) \]

and then we would derive

\[\text{wdec}(S, t) = \text{tmin} < t = \max(x - y, x - z) < x = \max(-y, -z) < 0 = \min(y, z) > 0 . \]

(End of example.)

The example shows that Kruseman Aretz's alternative definition does not only embody a conceptual simplification, but that it also smooths the formal labour to be performed. It couples in a very direct way the derived condition \(\text{wdec} \) with the fundamental condition \(\text{wp} \) in a way that is very familiar from the axiom of assignment.

* * *

In retrospect I blame myself for acquiescing in my ugly original definition. I knew quite well that it was ugly: it was preceded in [1] by "Note (which can be skipped at first reading)." But I have failed to hear my own warning!

* * *

It was only after the above had been typed that I was told about the heuristics that had led to the new formulation of \(\text{wdec} \). For that part, Kruseman Aretz gave the credit to M.Rem: it seems to have been the typical multi-person achievement, in which it is very hard to reconstruct later who has contributed what.
The argument is the following. Let us introduce an auxiliary variable,
\(t_0 \) say, in which the value of \(t \) is recorded prior to the execution of \(S \).
(For the sake of this recording we assume that the value of \(t \) can be "computed",
so that it can be assigned to \(t_0 \).) Then we define
\[
\text{wdec}(S, t) = \text{wp}(\text{"t0:= t; S"}, t < t_0)
\]
because the weakest pre-condition that "\(t_0:= t; S \)" is guaranteed to establish
\(t < t_0 \) is, indeed, the weakest pre-condition for \(S \) such that \(S \) is guaranteed
to decrease \(t \) (by at least one, because \(t \) is an integer-valued function).
But, thanks to the axiom of concatenation, this right-hand side reduces to
\[
\text{wp}(\text{t0:= t, wp}(S, t < t_0))
\]
which, thanks to the axiom of assignment, reduces to
\[
\text{wp}(S, t < t_0)^{t_0}
\]
and that is exactly the expression I gave on EWD573 - 0.

[1] Dijkstra, Edsger W., Guarded Commands, Nondeterminacy and Formal

Plataanstraat 5
NL-4565 NIJENGEN
The Netherlands

prof.dr.Edsger W.Dijkstra
Burroughs Research Fellow