U ledel oot leol.
» cemple ¢ owecteol EWD596 - 0

Un a problem from Aha, Hoperoft and Ullman.

This text records my experience with a problem to which Ir.W.H.J.Feijen
drew my attention. He suggested that I should tackle it and try to construct
the_most beautiful solution I could think of. (In addition, he told me, that
Aho, Hopcroft and Ullman classified the problem as very easy.) As it was a

problem I hed never thought about before, I decided to accept the challenge.

Given a sequence of M elements A(1) through A(M) we can form "a
subsequence of length s " from it by removing M-s elements and retaining
the remaining s elements in their original order. Given two SEqUENCES
A(1) through A(M) and B(1) through H(N) » it is asked to make a program
--assuming that each element has, say, an integer value-- the maximum length
of a common subsequence, in ether word: the maximum length of a sequence
that is both a subsequence of the A's and of the B's . S0 much for the
problem, (As usual I shall identify the order from left to right with that

of increasing subscript value.)

An obvious way to try te solve this problem is via "induction" over one

of the lengths. With our final relation

R: k = the maximum length of a subsequence common to A(1) through A (M}
and to B(1) through B(N)

we could try an invariant relatianm

P(k, n): k = the maximum length of a subsequence common to A(1) through

A(M) and to B(1) through B(n)
which is easily initialized for small n (=0 or =1)}. Because

(P(k, n}) and n = N) =R

we should ther try to increase n under invariance of P . I am slightly
repelled by the asymmetry of this attack; yet it seems a simple thing to try

first and it may, at least, give me some familiarity with the problem.

Suppose that P(k, ﬂ) holds for a certain value of n . After ni=n + 1
we have P(k, n-1) + The guestion then becomes: how changes k when we ex-

tend B(1) through B(n-1) with B{n) 7 This extension will increase k

EWD596 -

when the "new" element B(n) can be used in a longer subsequence, i.e. iff

we can find an A(i) = B(n) with - 1 > the ordinal number of the rightmost
element of a subsequence of length k from A(1) through A(M) that is comman
to B(1) through E(n—1) . This means that we have to know the leftmost
position of the rightmost element of such a common subsequence. If we don't
find such an element , k remains constant: it may, however, move the leftmost
position of such a rightmost element. We get the same argument as in EWD591
-~I am getting a suspicion why Feijen posed this problem to me-- and we add

to our invariant relation:

for 1 <j <k, m(j) = the minimal value, such that A{m(j)) is the rightmost
element of a subsequence of length j from A{1)
through A(H) that also occurs in 8(1) through B(n)

Similarly to EWD591 we observe that m(j) is an increasing function:

T<i<j<k = m(i) <nmlj)

Let us now consider the adjustment of the array m . It

(A i: 1 <i<m a(i) £ 8B(n))

the array m can remain unchanged. (This reflects that, to start with, we
could have pruned the sequences by removing all elements with values that don't

oceur in the other sequence.)

Suppose, next, thai the equation A(i) = B(n) has one solution for i ,
and let j satisfy m(j—1) < i <Zm(j) « In that case, a sequence of j-I
elements, taken fram A(1) through A(m(j—i)) matches one taken from B(1)
through E(n—1), and, as A(i) = B(n) y we have found a common subsequence of
length j with A(i) as its rightmoust element., The adjustment needed can
then be done by m:(j)a i . In order to capture the case j =1 as well,
we can extend the array variable at the low side with m(O) =0 . 1In the
case that the only solution of A(i) = E(n) satisfies 1 >’m(k) , @ longer
match is possible: k should be increased by 1 and m could be adjusted by
m:hiext(i) . In order to treat this case just as the others, I suggest that
we extend the array m beforehand with m{k+1) = M + 1 ; this is the normal
coding trick, it is this time as if we extend the array A temporarily with

the value B(n) » kind cof "forcing the match™,

EWD596 - 2

Some care is needed --and it is here that I tend to disagree with the
"very easy" of A., H., and U. {but our standards may differ; alternatively I
might be working on a clumsy solution}-- in the case that A(i) = B(n) admits

more than one solution., When establishing a j such that
m(j-1) <i <m(j)

it is essential for the justification of the adjustment m:(j): i that the
value m(j-1) still refers to a match with respect to B(1) through B(n-1) ,
i.e. if we update the array m elementwise, we must do so in the order of
decreasing subscript value. The adjustment of m(j) may be done for values
nf j satisfying m(j—1) < i fgm(j) 3 in the following program such a value
of j is found by means of the usual binary search. Without declarations

the following program would do:

ni= 0; m:= (0, 0, M+1);
don # N —-ni=n+ 1; x:= B(n);
i, j t= M, m.hib;
do i £0 o if A(i) £ x - skip
] A(i) = x = 1:= m.lob;

do L+ 1 £ j—hi=(1+j) div 2;
if m{h) <i = li=h
J i<m(h) - ji=h
fi
od;
m:(j)= i
fi;
it= 31 - 1
od;
do m.high # M + 1 — m:hiext(M + 1) od
do;
ki= m.hib - 1
Note how, when A(i) = B(n) has more solutions for i , the starting area for

the binary search shrinks., It is an algorithm of the type M*N*(lng something),
and, being the only solution I have found so far, it is also the most beautiful

one I have found so far.

EWD596 -~ 3

The time-consuming part of the above process is the scan (proporticnal
to M) in order to find the soluticns for i of the equations A(i) =X ,
because it has to be done N times. A preliminary sorting of the A-values
(with their original positicns) which is of the order M*(lug sumething)
allows us to replace the scan proportional to M by a binary search proporticnal
to Log M, and the resulting algorithm should be of the order (M+N)*(log some=-
thing) . At the moment I don't feel inclined to code that.

* - *
*
Although I don't expect to find a faster algorithm, for the sake of its
paotential elegance I would like to do at least a preliminary investigation of

a more symmetric solution, with a kind of induction on k .

Let Vv(k) be the set of all pairs (m, n} , such that A(1) thraugh A(m)
and B(1) through B(n) are a pair of "shortest" sequences containing a comman
subsequence of length k, "shortest" in the sense that decreasing either m
or n or both would result in a pair nc longer containing a common subsequence
aof length k . The initialization is no prublem, because V(O) = {(O, O)} .
Suppose that from a nonempty V(k) we can deduce V(k+1). If V(k+1) is

empty, we have found k ; otherwise we proceed (after ki= k + 1, etc.)

If the set V(k) contains the pairs (m1, nl) and (m2, n2) , it is
not difficult to prove that

({m1, nt) # (m2, n2)) = (mt # m2 and nt # n2) and

ml <m2 = nl >n2 ,

i.e. the pairs can be uniquely ordered in the aorder of increasing m ; they

are then also ordered inm the order of decreasing n . This is the best I

can say about the pairs (m, n) in the set V(k), and we could have a look
whether it can be explecited in the construction af V(k+1). In order to avoid
notatienal confusian, V(k+1) will be described as composed of pairs (a, b)

in exactly the same way as V(k) is composed of pairs (m, n) . Let us build
up the pairs (a, h) in the order of increasing "a" (i.e. decreasing "b").

For "a" we have to investigate the sequence mi+i, ... , M in that order, where
ml is the smallest m-value. Let & be the current value under investigation,
let mi be the largest m-value, satisfying mi <& . Then we search for the

smallest b , such that A{3) = B(b) and b >ni , where (mi, ni) is a pair

EWD596 - 4

from V(k). So, as & inereases, the lower bound faor the corresponding b
decreases. On the other hand, because we have to find the b's in decreasing

order, the upper bound of the area to be searched, as given by
b < min (N+T, the b's found so far)

moves down as V(k+1) grows. It is not clear at all that this strategy
reduces the number of comparisons of A-values with B-values, I don't feel

tempted to code it, and give up.

