EWﬁ604 -0

Paying logical conscience-money to the fair daemon.

’

The traditional formulation of the difference between total and partial
correctness is: in the case of total correctness we prove that a correct reasult
will be produced, in the case of partial correctnesss we prove that no incofrect
resﬁlt will be produced, or. more explicitly, in the case of partial correctness
we prove that either a correct result will he produced or that the mechanism
fails to terminate. As a result, a proof of partial correctness supplemented

with a proof of termination yields a proof of total correctness.

In the sixties R.W.Floyd did just that, basing Himself on a flowchart
language. A year later, C.A.R.Haore gave semantic axioms and proof rules for
partial correctness for a language with more syntactical structure. Floyd's
approach was still very operational, and he seemed to consider the semantics
of his program --as a lwurking mecﬁanism"—— also defined in the case of non-
termination. Hoare, who only ccncerned himself with partial correctness, did not
need to talk about termination and his approach is in that sense less operational,

less "mechanical'. .

I liked Hoare's approach --it was at the time that I waes coining the term
structured programming-- much better than Floyd's, but was also dissatified by
it, because it was clearly incomplete: his axoims and proof rules permitted one

to translate "while B do S od" into "while B do skip od" .

In the early seventies I developed the predicate transformers as a means
for defining program semantics. My approach differed from the previous ones

in two main aspects: I restricted myself to total correctness and allowed non-

determinacy.

The operational interpretation of my formal system is that for those
initial states in which tarmination is not guaranteed, I have left the semantics
undefined. The inverse interpretation is that my formal semantics for a program
5 are only concerned with those initial states satisfying wp(S, T) ~--that
"the answer" is only defined as a partial "function"-- and that for all ipitial
states not satisfying wp(S, T) any implementation is totally free to choose
its reaction: the mechanism may embark upon an infinite computation, it may even

evaporate.

EWD6G4 - 1

That the formalism is restricted to what can be accomplished by terminating
computations has the very great advantage that I éeally don't need to talk about
non-terminating ones. This is a great advantage, because the qusstion of terminatio:
nontermination is always couched in operational terminelogy, from which I could
now depart: if so desired 1 can ignore the circumstance that my text also per-

mité the interpretation of executable code.

I had to pay a price for that puxury. For the program -

S5: 80 x>0 = x:= x + 1
ﬂ X >0 - x1= 0
od

I have only defined that for x <90, 5 is equivalent to a skip, for x >0

I have not only defined nothing --that is not too bad, because: termination

is not guaranteed, isn't it7-- but have not even the tools for defining that,
if it terminates, it will terminate with x =0 . The purpose of this note is
to show how I can attach a meaning to such a program 35 by regarding it as

an abbreviation of a program §¢

Consider the general repetitive construct

DO: do Bl =51 | ... [Bn - Sn og
IF: if Bl - St ... [Bn = 5nod
BB: Bl or ... or Bn

and suppase that we have proved for a certain P :

(Prgg_t_:l_ BB) = wp(IF, P) | (1)

With a ghost veriable t we derive the primed system:

Bj' = Bj and t >0 (hence BB' = BB and t > 0)
Si' = Sj; tiz t - 1)
P' = Pand t >0 .

Then (1) implies (P' and BB') = wp(IF', P')
furthermore (P* and BB') => wdec(IF?, t) and t >0 .

Hence our well-known theorem about the repetitive construct allows us to conclude

P! = wp(DU', P' and non BE') .

EWD604 - 2

Expressed in the old P and BB , this post-conditicn reduces to

P and t >0 and (non BB or t < 0)

which implies t>0 = (P and non BB) _ (2)

Operationally, (2) can be interpreted as "when S stops, we could bave
chosen for t such a large initial value that its final value is still positive,
hence P and non BB’ has besen established”. By introducing the ghost variable
t which --in the operational sense~- does not only count the repetitions but also
forces termination, we have related S5 +to a program S*' for which I can prove
total correctness in my usual manner.

* *

The above formal manipulations are not in any sense deep. But I am very
pleased. Instead of building my theory upon mechanisms which may terminate or
not, I build my theory on texts to which --but I don't need to remember that--
terminating mechanisms can be made to correspond. By abbreviating some texts
(from s5' to S) I indicate a reduction of the mechanism, and the reduced mechanism

may fail to terminate....

As said, I am very plsased, for I hope that this "trick" will enable us to
cope in multiprogramming without mzthematical problems with the kind of "bounded
but unspecified" nondeterminacy that we have captured in the up till now in-

tractable metaphor of "a fair daemon".

10th of January 1977

Plataanstraat 5 prof.dr.Edsger W.Dijkstra

NL-4565 NUENEN Burroughs Research Fellow
The Netherlands '

