Copyright Notice

The following manuscript

EWD 650: A theorem about odd powers of odd integers

is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 349–350 of

Reproduced with permission from Springer-Verlag New York. Any further reproduction is strictly prohibited.
A theorem about odd powers of odd integers.

Theorem. For any odd $p \geq 1$, integer $K \geq 1$, and odd r such that $1 \leq r < 2^K$, a value x exists such that

$R: \quad 1 \leq x < 2^K \quad \text{and} \quad x^p \mid (x^K - 1) \quad \text{and} \quad \text{odd}(x)$

Note. For "$a \mid b$" read: "a divides b". (End of note.)

Proof. The existence of x is proved by designing a program computing x satisfying R.

Trying to establish R by means of a repetitive construct, we must choose an invariant relation. This time we apply the well-known technique of replacing a constant by a variable, and replace the constant K by the variable k. Introducing $d = 2^k$ for the sake of brevity, we then get

$P: \quad d = 2^k \quad \text{and} \quad 1 \leq x < d \quad \text{and} \quad d \mid (x^p - 1) \quad \text{and} \quad \text{odd}(x)$

This choice of invariant relation P is suggested by the observation that R is trivial to satisfy for $K = 1$; hence P is trivial to establish initially. The simplest structure to try for our program is therefore:

\[
x, k, d := 1, 1, 2 \{P\};
\]

\[
do \ k \neq K \rightarrow \text{"increase } k \text{ by 1 under invariance of } P\text{" od } \{R\}.
\]

Increasing k by 1 (together with doubling d) can only violate the term $d \mid (x^p - 1)$. The weakest precondition that $d := 2^d$ does not do so is -- according to the axiom of assignment -- $(2^d) \mid (x^p - 1)$. Hence an acceptable component for "increase k by 1 under invariance of P" is

$(2^d) \mid (x^p - 1) \rightarrow k, d := k + 1, 2^d$.

In the case non $(2^d) \mid (x^p - 1)$ we conclude from $d \mid (x^p - 1)$ that $x^p - 1$ is an odd multiple of d. Because d is even, and p and x are odd, the binomial expansion tells us that $(x + d)^p - x^p$ is an odd multiple of d, and that hence $(x + d)^p - x^p$ is a multiple of 2^d. Because also d is doubled, $x < d$ remains true under $x := x + d$, because d is even and odd(x) obviously remains true, and our program becomes:
x, k, d := 1, 1, 2 \{ P \} \\
\textbf{do} \; k \neq K \rightarrow \textbf{if} \; (2 \ast d) \mid (x^p - r) \rightarrow k, \; d := k + 1, \; 2 \ast d \; \{ P \} \\
\textbf{fi} \; \{ P \} \\
\textbf{od} \; \{ R \} \\

Because this program obviously terminates, its existence proves the theorem.
(End of proof.)

* * *

With the argument as given, the above program was found in five minutes.
I only mention this in reply to Zohar Manna and Richard Waldinger, who wrote
in "Synthesis: Dreams => Programs" (SRI Technical Note 156, November 1977)

"Our instructors at the Structured Programming School have urged us
to find the appropriate invariant assertion before introducing a loop.
But how are we to select the successful invariant when there are so
many promising candidates around? [...] Recursion seems to be the ideal
vehicle for systematic program construction [...] In choosing to
emphasize iteration instead, the proponents of structured programming
have had to resort to more dubious (sic!) means."

Although I haven't used the term Structured Programming any more for at least
five years, and although I have a vested interest in recursion, yet I felt
addressed by the two gentlemen. So it seemed only appropriate to record that
the "more dubious means" have --again!-- been pretty effective. (I have
evidence that, despite the existence of this very simple solution, the problem
is not trivial: many computing scientists could not solve the programming
problem within an hour. Try it on your colleagues, if you don't believe me.)