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Termination detection for diffusing computations.

by

Edsger W.Dijkstra and C.5.Scholten

The following seems to capture the guintessence of a situation that
is not unusual in distributed processing. Consider a finite, directed
graph. {If the graph contains an edge from node A to node B , we call
B "a successor of A " and A "a predecessor of B ",} One node is called
"the gate" and we may assume that each node is "reachable from the gate™, a

concept defined by the (usual) postulates:

1) the gate is "reachable from the gate"
2) if A is "reachable from the gate", so are all successors of A
3) only those nodes are “reachable from the gate" that are so on account

of 1) or 2) .
In addition, the gate has an extra incoming edge, leading to it, so to speak,

from "the environment™ --a symbolic predecessor of the gate—- .

A so-called "diffusing computation" is started when, via that extra
edge, the environment injects a "message" into the gate. Prior to that, all
nodes are assumed to be in their "neutral" state; after reception of its first
message, a node is free to send messages to its successors. It is this

feature that inspired the name "diffusing computations™.

We shall confine our attention to computations for which it can
be proved that each node will send only a finite number of messages. Ffor
such a computation eventually each node will reach the situation in which it
neither receives nor sends any more messages; when all nodes have reached that
state, the whole graph is as dead as a doornail and the diffusing computation

is defined to have terminated.

Our problem is the design of a signalling scheme --to be superimposed
upon the diffusing computiation proper-- such that, when the diffusing compu-
tation proper has thus terminated, the gate will eventually signal the fact

of this completion back to the environment. Besides a node's ability to re-
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ceive messages from its predecessors and to send messages to its successors,
we assume each node also able to receive "signals" from its successors and to
send "signals" to its predecessors; in other words, each edge is assumed to
be able to accommodate two-way traffic, but only messages of the computation
proper in the one direction and signals in the opposite direction. We shall
impose that in the total computation --i.e. from the moment that the initial
message was injected into the gate until the gate emits the completion signal
towards the enviromment-- each edge will have carried as many messages in the

one direction as it has carried signals in the opposite direction.

For each edge we define the "deficit" as the number of messages
transmitted along that edge, minus the number of signals returned along it.

In the signalling scheme we propose, each node keeps track of
D = the sum of the deficits of its outgoing edges

(initially and finally zera). A node sending a message to one of its
successors increases its I by 1 ; wupon receipt of a signal from one of
its successors it decreases its D by 1 , Note that a node records neither
to which successors it has sent messages, nor from which successors it has

received signals.

Furthermore each node has what we have dubbed a "carnet" (initially
and finally empty). The name "cornet" has been chosen because, like in a
pointed bag, one element contained in it enjoys a special status: whereas
in a traditional bag all elements contained in it enjoy the same status, one
of the elements in a non-empty cornet occupies the special position of being
"the cldest element". (Whereas a stack is characterized by "last in, first
out", a cornet is characterized by the much weaker "very first in, very last

out™,)

Each reception by B of a message from A causes the name of A to
be added tc B's cornet, which by this mechanism can be filled with names
of predecessors of ﬁ . Note that, because the directed graph may contain
merging (and even cyclic) paths, the cornet of B may contain the name of
B's predecessor A several times. When the name of A is added to B's

empty cornet, this occurrence of A's name in B's cornet is marked as
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"the oldest element", The transmission of a signal fruom B to its prede-
cessor A is accompanied by the removal of ane occurrence of A's name

from B's cornet.

As reception of a message from a predecessor and transmission of a
signal to a predecessor correspond --in the way just described-- to the only
changes of the contents of a node's cornet, and because a node has to return
to each of iis predecessors a signal for each message received from that
predecessor, the current contents of a node's cormet summarize its signal-
ling obligatians. The choice of predecessor to send & signal to is, by de-
finitien, constrained by the condition that the name of the predecessor chosen
occurs still at least once in the cornet of the signalling node (because
otherwise it would beg impossible to remove an occurrence of that name from
that cornet). The additional constraint --which distinguishes a cornet from
a standard bag-- is that from a cornet the element marked as "the oldest
element" may only be removed provided it was the only element in the cornet

(which, as a result of the removal, then becomes empty).

We define for esch node C to be the "size" of its cornet. i.e. the

number of elements contained in its cornet. Note that for each node

C = the sum of the deficits of its incoming edges .

A node's freedom of sending messages and signals is only constrained

by the obligation to keep
Pl L>0 or I =20

invariant (and by the obvious obligation not te be infinitely lazy). This

completes the description of the signalling scheme.,

* *
*

In its role of message receiver and signal sender, each node guarantees
by its structure for each of its incoming edges a non-negative deficit. Hence

all deficits are non-negative and we have for each node

P2: D=0 .

The definition of C implies for each node
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The sending of a message keeps F1 invariant for all nodes: for
the sending node by virtue of its construction, for the receiving successar
by virtue of the fact that its C 4is increased by 1 , and for all other

nodes because their C's and D's remain unaffected.

Also the sending of a signal keeps P1 invariant for all nodes: for
the sending node by virtue of its construction, for the receiving predecessor
by virtue of the fact that the accompanying decrease of its D by 1 can
never destroy the truth of "I = 0 on account of P2, and for all other nodes

because their C's and D's remain unchanged.

Because the sending of a signal includes for the sender C:=oC - 1 ,
the invariance of P1 and P53 requires, by the axiom of assignment, that

the act of signalling be guarded by

G: (E-1>O£D=O)and(ﬁ—120)

which is equivalent to

i

G: C>1 or (D=0

and C = 1) .
When the computation proper has terminated, no C is increased any-
more; the ensuing signalling, as guarded in each node by G , will terminate
because sach sending of a signal decreases the sum of all the C's over the
graph, a sum that is bounded from below on account of P3 . Hence, when the
computation proper has terminated, the system will reach the “ultimate state
in which neither messages nor signals are anymore sent. From the fact that
no more signals are sent we conclude that in the ultimate state pon G holds

for each node, which under the truth of P2 and P% reduces to

C=0 pr(C=1andDd>0) . (1)

Because the [ of each node equals the sum of the deficits of its incoming
edges, and (1) impiies C <1 , we conclude that for each node the sum of
the deficits of its incoming edges is < 1 . Therefore the maximum deficit

is <1 and no two edges with a positive deficit cen point to the same node.
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Moreover, (1) ‘tells us that a node with C = 1 has D >0, hence an out-

goinyg edge with deficit

1+ In short: in the ultimate state the target
of an edge with deficit =1 is the source of a similar edge. Because the
graph is finite and no two such edges can have the same target, we conclude

our

Lemma. In the ultimate state edges with a positive deficit have a deficit
=1 and form node—disjaint.(directed) cycles; the nodes an these paths

have C =1 and D =1,

Since the edge from the environment to the gate lies on no cycle at

all, it has in the ultimate state a deficit = 0 ; hence we conclude

Theorem 1. When the diffusing computation has terminated, the gate will

eventually have returned a signal to the environment.

Up till now we have not made use of the fact that a node has a cornet:
for all of the above a standard bag would have been sufficient., We shall now
explait the difference between a bag and a cornet in order to prove that the
gate will not return a signal too soon, i.e. before the diffusing computation

has terminated.

We call a node without "oldest element", i.e. one with C =0, a

"neutral node"; because C equals the sum of the deficits of its incoming
edges, its incoming edges have a deficit =0 ; on account of P1 it has
D=0. i.e. also its outgoing edges have a deficit = O , and, hence, a

node never sends & message while being neutral. A node that is not neutral

is called "engaged". We can now formulate the invariant relation

P4 the set of edges, each of which leads to an engaged node from its
predecessor named by the oldest element of that engaged node, form
a rooted tree --the so-called "engagement tree"-- for which the

environment acts as the root.

Because only the gate can have the environment's name as its oldest
element, the gate is the only possible descendant of the environment. Re-
lation P4 is certaiﬁly true at the beginning, when the environment injects

a message into the gate. It obviously remains true when node B becomes
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engaged: B does so by receiving a message. from one of its predecessors,
node A say, but at that moment node A was certainly engaged, and the
engagement tree is extended with a branch from A to B . Fipally we have
tc show that, when B returns to neutral, it was a leaf of the engagement
tree. When B returns to neutral, it reduces its C to zero; as it keeps
Pt wvalid, it does so at a moment at which its D is zero, i.e, at a moment
without outgoing edges with a positive deficit and, a fortiori, without
outgoing branches of the engagement tree. Hence at that moment B was &

leaf of the engagement trze.

Having thus established the existence of the engagement tree, we are

ready to prove

Theorem 2. When the gate returns a signal to the environment, the diffusing
computation has terminated,

Proof. When the gate returns a signal to the environment, it itself returns
to the neutral state; as the gate was the environment's only descendant, the
engagement tree is now empty, i.e. all nodes are in the nsutral state, i.e.

no more messages gre sent. (End of prnof.)

Remark. 0On account of the close similarity between termination of the diffusing
computation and deadlock, it seems likely that our solution can he adapted to
the purpose of deadlock detection in networks. As we are more in favour of

deadlock prevention we did naot pursue this possibility, (End of remark. )
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