EWD721 - C
EWD721.html

The design of a state space with a useful structure.fl)

We naow turn to the discussion of another problem that is already old;
it has been solved in one way or another in each implementation of ALGOL 6€0.
In retrospect it is surprising that the problem has been so hard to solve and
that with very rare exceptions --Burroughs Corporation is the exception that
comes to mind immediately!~- computer manufacturers have been very slow in

recognizing the problem and in designing hardware suitable for its solution.

In EWD719 I introduced the transition from uni- fo multiprogramming
with the reguirement that different programs using the same library subrou-
tine could share the same bit pattern representing the subroutine body in
store. This, of course, creates probiemg when information warying from call
to call --such as the return information, to mention a very simple example--
is allocated within the bit pattern representing the subroutine baody. This
allocation was very much ingrained in peopie's minds, so much so that it found
iis way into the hardware --I remember a Siemens computer in which a subrou-
tine jump with address n would store the return jump in location with ad-
dress n and would substitute nt+l into the instruction counter!-- and for
g2 while it was thought that, therefeore, invacations of a shared subroutine
wauld have to exclude each ather mutually in time --a synchronization for
which aforementioned Siemens machine lacked the necessary facilities--~ . But
the mutual exclusion was identified es a red herring as soon as recursion
entered the picture: nested invocatians are by their very nature not mutual-

ly exclusiwve.

In the case of subroutines the same piece of code can be invoked by
different calls in the program. This implies that for each subroutine we can
identify what we might call "its primary allocation cammitment", i.e. that
fixed part of the machine the state of which depends an the call and, there-
fore, in general will vary from call to call. In different machines differ-

ent conventions faor the primary allocation commitment have been cheosen.

In the EDSAC organization we find a mixture of all conceivable conven-—

tions:

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD721.html

EwD721 - 1

1) part of the primary allocation commitment consisted of storage loca-
tions allocated within the suhroutine's bit pattern (such as the return jump

and other variable instructions)

2) part of the primary allocation commitment consisted of the accumulator
of the arithmetic unit (in which at call the return infurmation was trans-

mitted)

) a few fixed storage locations (such as location O) were used by many

subroutines for parameter passing

4) for some subroutines part of the primary allocation consisted of an
area of store to be chosen by the programmer and to be fixed with a preset
parameter (the diffefence between the last two being that the first commit-
ment was comman io many subroutines, whereas the last one was usually specif-

ic to a single one) .

In a machine like the IBM/360 with 16.general purpose registers in its
arithmetic unit the convention of using a few fixed storage locaticns was

usually not introduced.

In the EL-X1 the order code comprised 16 different subroutine jumps,
each of them placing the return information in one of 16 consecutive storage
locations {from 8 through 23); each subroutine had to be called by its proper
subroutine jump and the corresponding location belonged therefore to its pri-

mary allacation caommitment.

The first convention --a primary commitment to store allocated within
the code-- was forced upon the users of the first von Neumann machines for
lack of B-lines (= index registers). It became a standard to such an extent
that subroutines in which it was not adhered to were for at least a decade
hbonoured with a special name: they had "re-entrant code". Today it should
not be a special feature anymore: subroutines stored in ROM (Read Only Store)

are necessarily "re-gntrant”.

fonfining ourselves to re-entrant code we still have have a choice: do

we try to give different subroutines in principle the same or in principle

EwWD721 -~ 2

different primary allocation commitments? In the EL-¥1 -——and that is the
reason why I mentioned it-- a mixed strateqy was adopted. Subroutines were
arranged in a hierarchy: all subroutines that called no others were placed
an level O , a subroutine calling others was placed on level n+l when n
was the maximum level of the subroutines it called. Subroutines on level n
used location 8+n faor their return link. At the time we thought this a
bright idea, but it was, of course, a mistake. The trouble is that the lo-
cations from 8 to 8+n now form part of what we might call the primary
allocaticn commitment of the program as a whole, and if the machine were to
be used for multiprogramming a switch from one program to another would imply

saving and restoring the corntents of those locations.

In the IBM/36O and its copies it is usual to give each subroutine a
heavy primary allocation commitment among the general purpose registers of
the arithmetic unit: for reasons of homageneity usually all of them. For
reasons of speed the registers are the coder's most beloved locations for
storing frequently accessed information and the machine has indeed been de-
signed under the assumption that the coder would use it that way. That was
a mistake too, for the necessary saving and restoring of register contents
now imposes a heavy overhead on the mechanism of subroutine call and return,
so heavy as a matter of fact that for such machines so~called "macro expansion®
--i.e. replacing the call by (an adapted version uf) the whole subroutine
body!-- has become a usual implementation technique. (And where the technique
was not applied, as in some implementations of PL/I , the paoor programmer

got the advice to avoid using procedures!)

The most homogeneous solution gives all subroutines the same primary
allocation commitment, but keeps this commitment as small as possible in order

to reduce the overhead of call ard return as much as possible.

Note. The time taken for the execution of a program or program part can be
"described" --the quotes because the terms used will not be defined precisely-—
by 1i + w/v » where 1i stands for "initial investment" and v for the speed
with which the useful work w is donme. In the case of a whole program, 1i

might stand for the time taken by the compilation and w/v for the time taken

EWD721 - 3

by the execution of the compiled program. In the case of a subroutine, ii
might stand for the overhead of call and return and w/v for the time taken
for the execution of the subroutine proper. It is always tempting to increase
ii if by doing so v can be increased considerably: it is the temptation to
which is yielded by the introduction of optimizing compilers, for instance,
which themselves can be very time-consuming indeed. It should be noted that
yielding to the temptation can be very dangerous, viz. in all those cases

in which it cannot be guaranteed that w will indeed be big enmough to get

a praper return for the investment: the cost/perfnrmance ratia (ii + w/u)/w
viewed as function of w is unbounded when ii £ 0 ! Installations spending
most of their time compiling, loading, linking etc. have indeed been quite
common. Because in most procedures w , i.e. the amount of useful werk to

be done, depends on the values of the parameters supplied at the call, a small
value of ii is most desirable; otherwise one can get most unpleasant sur-
prises when for a large number of calls w turns out to be small. (End of

Note.)

The scene changed in the late fifties, when the following observation
was made. Consider in the execution of a sequential program the time sequen-

ce of calls and returns; it satisfies the well-known grammar
<. sequence > ::= { <Icalli = < sequence > << return, >*}
1

i.e. it is a nicely nested sequence with the call of A and the correspond-
ing return from A as a matching bracket pair. To any moment in time cor-
responds a place in this sequence and we only need to store the return in-
formation corresponding to the bracket pairs that surround this place: they
correspond to the calls of which the corresponding returns have not taken
place yet. So let us introduce a non-vaolatile nomenclature for the members
of this floating population of the bracket pairs that surround the current
place in the sequence. The only orderly way we know of is assigning the first
free number whenever the current place passes a call in the sequence, i.e.
when a new member is added to the population of surrounding bracket pairs.
Thanks ta the fact that the sequence is nicely nested this strategy gives
rise to a closed nomenclature! Each bracket pair becomes identified with a

an ordinal number equal to the number of bracket pairs surrounding it.

EWD721 - 4

This discovery is, of course, too beautiful not to be exploited. We
introduce for such ordinal numbers the term "invecation numbers"; note that
the invocation numbers provide a terminology that is local to the executian
of a sequential program. With the Execution.of a sequential program we as-
sociate a Current Invocation Number, "CIN" for short. When the program
execution is started, the CIN is initialized at zero, at every call the
increase CIN:= CIN + 1 takes place, while CIN:= CIN - 1 accompanies every
return. In a table with the invocation number as selector the return infor-
mation can be stored in the entries under control of CIN ; wupon return the
return information can be retrieved again under control of CIN. At any
time the value of CIN gives the length of the table, which is used as a
so-called "stack", in which the entries reside on a so-called LIFO (Last-In-
First-ﬂut) basis. In other literature the CIN is also referred to as "the

current depth of calling”.

A machine built in the early sixties (the Engligh Electric KDF9) had
this built in, hbut alas under the assumptien that a maximum value of 16 for
CIN would suffice, an assumption that is hard to defend in the case of re-
cursion. At the time of the design of the KDF9Y, recursive routines were not
regarded as & reasonable programming tool; “the problem is of course that the
subsequent existence of machines on which the implementation of recursive

routines presents serious problems prolongs the lifetime of such a prejudice.

Recursion drove another message home. E£ach routine needs in general
some "working space" to allocate its local variables in. In uni-programming
and without recursion one can establish a one-to-one correspandence between
a routine and its local workspace. A naive implementation would then play it
safely, allocating store in such a way that the local workspaces of any two
different routines would be digjeint. But such a naive allocation does not
exploit the fact that the lcocal workspace of a routine is only needed between
its eall and the subsequent return from it: during its "activation™, as it
was called. Hence sa-called sophisticated implementations would perform an
an extensive flow analysis of the program, trying to establish for any pair
of routines whether their activations would always.be disjoint in time. And

then one can try to allocate working spaces, allowing as much overlap as pos-

EwD721 - 5

sible, but only between the working spaces of those routines for which it

had been established that their activations would never overlap., This allo-
cation problem is as bad as any graph colouring problem. In retrospect it

ig amazing that people have tried such soclutions and even prided themselves
on having done it. The problem should never have been solved! It was purely
generated by regarding the routine, instead of the invocation,as the unit of
thought. That in this connection the invocation was the proper thing to con-
sider was the message that was driven home by recursion, where the same rou-
tine may enjoy any number of simultaneous activations {but then each corres-

ponding to a different invocation).

With invocation numbers we have introduced a really new element: a no-
menclature that grows and shrinks as the computation evolves. As such its
introduction really implies a significant shift of the interface between the

program text and its interpreter.

The following may clarify the role of the invocation numbers. Consider
for simplicity's sake a program in which no procedure is handed over as a pa~
rameter. In that case we can easily define for that program a directed “ac-
tivatian tree" as follows:

the main program is the root of the activation tree, and each node of
the activation tree has an outgoing edge for every routine it may call, with
(an activation of) the routine called as its target node.

A nomenclature that distinguishes between all the nodes of this tree
would provide a constant nomenclature that at any moment in time would dis-
tinguish between all "live" activations. Without recursion the tree is finite,
E.q.

H/yﬂ——a'B
SR

but we do already have the possibility that the same routine —--for instance,

B in the above example-- occurs at several nodes of the activation tree, i.e.
the correspondence between routine and node is in general a one-to-many one.
In the case of recursion the activation tree is infinite, and at least one

routine occurs at an infinite number of nodes.

EWD721 - 6

At any moment in time the current activation corresponds to one of the
nodes of the activation tree. Its invocation number is its distance from
the root. And we now exploit the fact that the local work spaces COrres-—
ponding to the nodes on the unique path from the root to the current acti-
vation are the only ones that matter, and that in that subset, i.e. alang
that path, distance frum the root (= invacation number) identifies the node
(: activatinn) uniquely. The only special consequence of recursion is that
along a path from the root the same routine may occur infinitely aoften in-

stead of at moust ance.

1 assume the local variables of a routine within its local work space
identified by (small) integers, historically called "the displacements".
(Think, to simplify matters, for the time being about a local work space
only comprising a fixed number of variables, each requiring one word of stor-
age; "fixed" means here: characteristic for the routine and independent of
its activation.) To all intents and purposes we can treat the displacements
in terms of which the routine body refers to its local variables as a clased

nomenclature; the displacement acts as a selector from the local work space.

Within the program each stored variable is then during its lifetime
fully identified by an ordered pair (invacation number, displacement). For

the program as a whole we introduce a

Program Invocatiaon Table, PIT for short
selector: invocation number
entry : return information,
starting address of local work space corresponding

to this invoecation.

Via the Program Invocation Table PIT we can derive from the ordered pair
(invocation number, displacement) the address of the locatiom in which the

value of the variable in guestion is currently stored.

(To ke cvr*‘mu.eot >

Plolaanshraat 5 215} November 1579
5671 AL NUENEN Pru?.dr_- Edsger . Dg lesTe
The Netherlomds Burrrughs Reseach Tellow

