Partitioning the edges of the complete graphs into trees or cycles.

by the Tuesday Afternoon Club

The $k(2k-1)$ edges of the complete $2k$-graph can be partitioned into k subspanning trees. We demonstrate the construction for $2k = 8$:

\[
\text{the three remaining trees are obtained by successive rotations over } \pi/4.
\]

The $k(2k+1)$ edges of the complete $(2k+1)$-graph can be partitioned into k subspanning cycles. We demonstrate the construction for $2k + 1 = 9$:

\[
\text{the three remaining cycles are obtained by successive rotations over } \pi/4.
\]

Plataanstraat 5
5671 AL NUENEN
The Netherlands

27 May 1980
prof. dr. Edsger W. Dijkstra
Burroughs Research Fellow