D.A. Turner's reply.

In reply to EWD759, D.A. Turner sent me the following proof by returning mail.

"Thank you for your "somewhat open letter", which arrived yesterday. You pose several tasks - the order in which I have decided to tackle them is to establish first the precise formal relationship between \(f \) and \(g \).

First some notation. I shall call the elements of a list \(f \), \(f_0 f_1 f_2 \) etc. and I shall use the notation
\[
[h(i)]^B_{i=A}
\]
for the list \([h(A), h(A+1), ..., h(B)]\).

Now I define a function "upto"
\[
\text{upto } i \cdot f = \text{least } j \geq 0 \text{ such that } f_j > i \quad (\text{upto.0})
\]
The claim to be established is that
\[
g = [\text{upto } i \cdot f]_{i=0}^\infty \quad (\text{Theorem 1})
\]

From upto.0 we deduce the following two propositions, which could be considered a SASL definition of upto

\[
\text{upto } i \cdot f
\]
\[a > i \vdash \text{upto } i \ (a; f) = 0 \quad \text{(upto.1)} \]
\[a \leq i \vdash \text{upto } i \ (a; f) = 1 + \text{upto } i \ f \quad \text{(upto.2)} \]

We have also your definition of the function “\(k \)"

\[p \leq y \vdash k \times y \ (p; q) = k \ (x + 1) \ y \ q \quad \text{(k.1)} \]
\[p > y \vdash k \times y \ (p; q) = x : k \times (y + 1) \ (p; q) \quad \text{(k.2)} \]

From these four propositions we shall deduce the following generalization of Theorem 1.

Theorem 0. \[k \times y \ f = \ [x + \text{upto } i \ f] \ ^\infty \]

Proof by structural induction on \(f \), which is an infinite list of integers.

Case \(\Omega_L \) (Note: we need to distinguish between \(\Omega_L \), the undefined element in the space to which \(f \) belongs, and \(\Omega_I \), the undefined integer. The relationship between them is \(\Omega_L = [\Omega_I]^\infty \)).

\[k \times y \ \Omega_L = \Omega_L \quad \text{from } \text{k.1, k.2 by case exhaustion} \]

whereas
\[[x + \text{upto } i \ \Omega_L] \ ^\infty \]
\[= [x + \Omega_I] \ ^\infty \quad \text{from upto.1, upto.2} \]
\[= [\Omega_I] \ ^\infty \quad \text{properties of } \Omega \]
\[= \Omega_L \quad \text{as required} \]
\[
\text{case } p : P \\
= [x]^{P : y} + k \times p (p : P) \text{ by repeated appl of } k.2 \\
= [x]^{P : y} + k (x+i) p P \text{ by } k.1 \\
= [x]^{P : y} + [(x+i) + \text{upto } i \ f]_i^p \text{ ex hyp.} \\
= [x]^{P : y} + [x + (1 + \text{upto } i \ f)]_i^p \text{ properties of +} \\
= [x]^{P : y} + [x + \text{upto } i (p : P)]_i^p \text{ by upto.2} \\
= [x + \text{upto } i (p : P)]_i^y \text{ by upto.1 and rearranging} \\
\]

QED Theorem 0.

Whence, since \(g = k \ 0 \ 0 \ f \), we have immediately

\text{Theorem 1 } \quad g = [\text{upto } i \ f]_i^0 .

Also you asked me to establish that \(g \) is
A) ascending and B) unbounded, given appropriate assumptions about \(f \). This now follows easily from the above. (Relaxing the level of formality somewhat) we have:
A) From upto.0 it follows (by transitivity of "\(\rightarrow \)") that "upto \(i \ f \)" is an ascending function of \(i \).
Therefore, whatever the nature of \(f \), \(g \) is ascending.
B) Let us define "\(f \) is unbounded" to mean:
"for any \(N \geq 0 \), there is a \(j \geq 0 \) such that \(f_j > N \)."
Assume \(f \) is unbounded (if ascending not relevant). Then, from \(\text{uplo} \ 0 \),

\[\text{uplo} \ i \ f \ \text{is defined for all } i \geq 0 \]

Given any \(N > 0 \), define \(j = \max \{ f_0, \ldots, f_N \} \)

then \(\text{uplo} \ j \ f \ = g \) exists, and by construction \(> N \)

So \(g \) too is unbounded.

* * *

So far Turner's reply. I like Turner's proof, and in view of the fact that Turner answered me by re-

turning mail it would be misplaced to complain too much about the fact that in "case \(p; f \)" the def-

initely less interesting case \(p < y \) hasn't been dealt with explicitly.

I am slightly uneasy in "case \(Q_k \)" — particularly after the parenthetical remark explaining the

difference between \(Q_k \) and \(Q_i \) — about the

justification "from k.1, k.2 by case exhaustion". My uneasiness is certainly caused by lack of

familiarity how to deal with \(Q_k \). Take

\[
\text{funny } (p; q) = \begin{cases}
\text{if } p \geq 10 \rightarrow 1 : \text{funny } q \\
\text{if } p < 10 \rightarrow 1 : \text{funny } q \\
\end{cases}
\]

is \(\text{funny } Q_k = Q_k \) ? Or is \(\text{funny } Q_k = \text{ones} \)

(with \(\text{ones} = 1; \text{ones} \))? I expect the first answer,
though I would prefer the second one, if I am giving full weight to the remark (in [1], pg 57)
"The first point to be made is that in reasoning about SASL programs, ω can be treated just like any other value as regards being substitutable in equations."
Perhaps I have failed to fathom the complete depth of the constraint "as regards being substitutable in equations".

The correspondence was triggered by remarks in [1] such as the recommendation of applicative programming (pg. 14):
"The proofs (like the programs themselves) are very much shorter than the proofs of the corresponding imperative programs."
I had my doubts, which have not been dispelled by the comparison of Turner's proof with the one given in EWD758.

Plataanstraat 5
5671 AL NUENEN
The Netherlands

27 December 1980
prof. dr. Edsger W. Dijkstra
Burroughs Research Fellow