My mother's contribution to Honsberger's collection.

In Fig. 1 we have an equilateral triangle ABC with a circumscribed rectangle PQRC. Prove that the areas x, y, and z of the three rectangular triangles in Fig. 1 satisfy $x + y = z$.

Subject triangle APC to an anti-clockwise rotation of 60° around A; in Fig. 2, P' and C' are the images of P and C. Subject triangle BRC to a clockwise rotation of 60° around B; in Fig. 2, R'' and C'' are the images of R and C. Because all three triangles are rectangular, the circle with diameter AB is the circumscribed circle of all three. Because our rotations were over 60°, $\angle P'AQ = \angle R''BQ = 120°$. Hence, $\text{arc } P'AQ = \text{arc } R''BQ = \frac{2}{3}$ of the circle's circumference; hence, so is $\text{arc } P'R''$, in other words: in Fig. 2 triangle $P'QR''$ is equilateral.
Because in an equilateral triangle the centroid coincides with the circumcentre, the centroid of $P'QR'$, called M, lies on the diameter AB. Therefore, with equal weights in its vertices, triangle $P'QR'$ is in balance when supported by a horizontal axis AB. From the fact that the torque caused by the weight at Q is compensated by the sum of the torques caused by the weights at P' and R'' respectively, $z = x + y$ immediately follows.

* * *

The problem stated in the first paragraph occurred in a series of geometrical problems I received from Ross A. Homsberger. After having sent a copy to my mother, mrs. B.C. Dijkstra-Kluiver, I received (among others) by returning mail the above argument, which I think too beautiful not to be recorded.

Plataanstraat 5
5671 AL NUENEN
The Netherlands

7 April 1981
prof. dr. Edsger W. Dijkstra
Burroughs Research Fellow