A minor improvement of Heapsort.

Heapsort is a very efficient algorithm for sorting the elements $M(i)$ for $1 \leq i \leq N$ of a linear array. To sort the elements in ascending order the algorithm maintains $H(p,q)$ defined by

$$H(p,q) : (\forall i,j : p \leq i < j < q \land 2 \cdot i \leq j < 2 \cdot (i + 1) : M(i) \geq M(j))$$

which enjoys the useful property

$$H(p,q) \land p = 1 \Rightarrow (\forall j : 1 \leq j < q : M(1) \geq M(j)) \quad . \quad (o)$$

The algorithm has the following form:

$$p, q := (N+1) \text{div} 2 , N ; \{ H(p,q) \}$$
$$\text{do } p \neq 1 \rightarrow p := p-1 ; \{ H(p+1,q) \} \text{ sift } \{ H(p,q) \} \text{ od ;}$$
$$\text{do } q > 2 \rightarrow q := q-1 ; \text{M:swap}(1,q) ;$$
$$\quad \{ H(p+1,q) \} \text{ sift } \{ H(p,q) \}$$
$$\text{ od .}$$

Since $p = 1$ is a further invariant of the second repetition, property (o) ensures that the sorted list is built up from "right to left."

The routine sift establishes -by $w := p$- and maintains

$$SH : (\forall i,j : p \leq i < j < q \land 2 \cdot i \leq j < 2 \cdot (i + 1) : M(i) \geq M(j) \lor w = i) \ ,$$
which enjoys the useful property $\text{SH} \land 2 \cdot w \geq q \Rightarrow H(p,q)$. The routine sift can repeatedly perform under invariance of SH $w := 2 \cdot w$ or $w := 2 \cdot w + 1$; sift compares each time $M(w)$ with the maximum of $M(2 \cdot w)$ and $M(2 \cdot w + 1)$. If $M(w)$ is large enough, $H(p,q)$ holds and sift terminates; otherwise w can be "doubled" at the price of 2 comparisons and 1 swap in array M. For further details we refer the reader to [0].

We can do better by replacing $H(p,q)$ by $H_3(p,q)$ — and, similarly, SH by SH_3 —

\[
H_3(p,q): (\forall i, j: p \leq i < j < q \land 3 \cdot i \leq j < 3 \cdot (i+1): M(i) \geq M(j)).
\]

Firstly, we can then start with a smaller p, viz. $(N+2)/3$; secondly sift can then "triple" w at the cost of 3 comparisons and 1 swap in array M. Now 6 comparisons and 2 swaps multiply w by 9, whereas originally 6 comparisons and 3 swaps were needed for a factor 8. (With the analogous $H_4(p,q)$ the gain in comparisons needed is lost again: $2^3 < 3^2$ but $2^4 = 4^2$; the gain at initialization and in number of swaps increases still further. Since $2^6 > 5^2$, $H_5(p,q)$ is expected to lead to more comparisons in sift.)

* * *

Some weeks ago I received under the title “Gleanings
from Combinatorics from Ross A. Honsberger of Waterloo University a short series of combinatorial problems with their solutions. One of them was how to partition a positive integer $n \geq 2$ into one or more (positive integer) parts so that the product of the parts is a maximum. The answer is:

for $n = 3k$, use k 3's;
$n = 3k + 2$, use k 3's and a 2
$n = 3k + 4$, use k 3's and a 4.

(The preponderance of 3's is not so amazing: 3 is the best integer approximation of e, which is the solution of the corresponding continuous problem. The observation $2^3 < 3^2$ was part of the justification of the discrete solution.) That the study of a gem from rather pure mathematics led to the discovery how to improve the efficiency of a standard algorithm, which is justly famous for its efficiency, was a very pleasant surprise. I think it is a lesson.

Plataanstraat 5
5671 AL NUENEN
The Netherlands

8 May 1981
prof. dr. Edsger W. Dijkstra
Burroughs Research Fellow