A note on substitution and renaming

The formal definition of the semantics of the assignment statement \(x := E \) uses the predicate denoted by

\[
P^x_E \quad \text{or} \quad P[E/x]
\]

it is the predicate derived from \(P \) by "replacing each occurrence of \(x \) in \(P \) by \(E \). In the context of the assignment statement the derived predicate is to be understood in the same state space as \(P \); in other words, in general, \(x \) occurs in \(E \). In the latter case, the substitution is a complicated operation in the sense that it both eliminates and reintroduces \(x \).

Some time ago I wanted to separate those two aspects by restricting the substitution to substituting the fresh variable \(x' \) for \(x \). In that case, we have two alternative expressions for \(P^x_E \):

\[
(0) \quad (Ex':: x' = E \land P^{x'}_{x'})
\]

\[
(1) \quad (Ax':: x' \neq E \lor P^{x'}_{x'})
\]

the two expressions being equivalent because -see EWD 834- \((Nx':: x' = E) = 1\). Formulation (1) has some preference because we normally deal with predicate transformers that distribute over conjunctions.

In the language fragment of "A Discipline of Programming", I avoided conditional expressions because, in my case, they would introduce "nondeterministic expressions" and I was not able to substitute them for a variable. Formulation (1), however, shows us the way how to do it.

The semantics of the above assignment statement
x := E is equally well captured by the predicate

(2) \[x' = E \]

(Note that, since, in general, x occurs in E, this is a predicate on the Cartesian product of initial and final state space — the latter one being the primed one.) Denoting (2) by Q, (1) takes the form

(3) \[(\forall x': Q \lor P^x_x) \]

E being a “deterministic expression” is reflected by \((\exists x': Q) = 1 \).

But this is easily generalized. With the assignment statement \(x := E \) we associate the predicate \(Q \) — in \(x \) and \(x' \) — such that the possible values of \(E \) are precisely the roots of \(x': Q \) (i.e. of \(Q \), when viewed as an equation in \(x' \)).

Example With \(\text{if true} \rightarrow +1 \text{ or true} \rightarrow -1 \) \(E \) for \(E \), we find \(x' = 1 \lor x' = -1 \) (or \(\text{abs}(x') = 1 \)) for \(Q \). (End of Example.)

With the above \(Q \), \(\text{wp}("x := E", P) \) is again given by (3). In other words, once we have decided to restrict substitution to “priming” or “renaming”, “nondeterministic expressions” are in a limited sense given for free — limited only because (3) might be harder to manipulate.

Newcastle-upon-Tyne

Plataanstraat 5 7 September 1982
5671 AL NUENEN prof. dr. Edsger W. Dijkstra
The Netherlands Burroughs Research Fellow