Two cheers for equivalence

Let us consider the operators \neg, \lor, and \equiv; \neg is a unary operator, \lor and \equiv are symmetric and associative operators defined on bags of at least 2 operands. For the latter two we adopt the usual infix notation; the three operators have been listed in the order of decreasing syntactic binding power.

In the presence of $P \equiv R$ a new formula may be formed by replacing in an existing formula one or more occurrences of P by R. (Leibniz's Rule.)

Axiom 0

$$P \equiv P \equiv Q \lor \neg Q$$

Parsing this ($P \equiv P \equiv Q \lor \neg Q$) we see that $Q \lor \neg Q$ may be replaced by $P \equiv P$, which does not depend on Q! This suggests to introduce the abbreviation

Abbr. 0

$$Q \lor \neg Q \equiv \text{black}$$

(where "black" may be viewed as a constant).

Applying Leibniz's Rule to the above two formulae we generate

Theorem 0

$$P \equiv P \equiv \text{black}$$

Parsing this as $P \equiv (P \equiv \text{black})$, and applying Leibniz's Rule we see that the suffix $\equiv \text{black}$ can be removed from a formula that ends on it; we are also free to add it to an existing formula. So we derive from Theorem 0 and Abbr.0 respectively

Theorem 1

$$P \equiv P$$

Theorem 2

$$Q \lor \neg Q$$

We now add

Axiom 1

$$P \lor \neg Q \equiv P \lor Q \equiv P$$

Substituting P for Q in Axiom 1 yields

$$\text{black} \equiv P \lor P \equiv P$$
yielding with Theorem 0

Theorem 3 \(P \lor P \equiv P \).

Applying Theorem 3 to Abbr. 0 yields
\(Q \lor Q \lor \neg Q \equiv \text{black} \),

yielding with Abbr. 0

Theorem 4 \(P \lor \text{black} \equiv \text{black} \).

Substituting black for \(Q \) in Axiom 1 yields
\(P \lor \neg \text{black} \equiv P \lor \text{black} \equiv P \)

and by application of Theorems 4 and 0

Theorem 5 \(P \lor \neg \text{black} \equiv P \).

Substitution of \(\neg \text{black} \) for \(P \) in Axiom 1 yields
\(\neg \text{black} \lor \neg Q \equiv \neg \text{black} \lor Q \equiv \neg \text{black} \)

and by applying Theorem 5 twice we get

Theorem 6 \(\neg Q \equiv Q \equiv \neg \text{black} \).

Substitution of \(\neg Q \) for \(Q \) yields
\(\neg \neg Q \equiv \neg Q \equiv \neg \text{black} \)

and from the latter two we get with Leibniz's Rule

Theorem 7 \(\neg \neg Q \equiv Q \).

Substituting in Axiom 1 \(P \lor Q \) for \(Q \), we get
\(P \lor \neg (P \lor Q) \equiv P \lor P \lor Q \equiv P \)

yielding with Theorem 3
\(P \lor \neg (P \lor Q) \equiv P \lor Q \equiv P \).

Confronting this with Axiom 1, we get

Theorem 8 \(P \lor \neg (P \lor Q) \equiv P \lor \neg Q \).
Substituting \(P \equiv Q \) for \(Q \) in Theorem 6 we get
\[
\neg(P \equiv Q) \equiv P \equiv Q \equiv \neg \text{black}
\]
and applying Theorem 6 once more we generate

Theorem 9 \(\neg(P \equiv Q) \equiv P \equiv \neg Q \).

With Theorems 1 and 6 we generate in succession
\[
\neg \text{black} \equiv \neg \text{black} \equiv \text{black}
\]
\[
P \equiv \neg P \equiv R \equiv \neg R \equiv Q \equiv \neg Q \quad \text{i.e.}
\]

Theorem 10 \(P \equiv Q \equiv R \equiv \neg P \equiv Q \equiv \neg R \).

Substitution of \(\neg P \) for \(P \) in Axiom 1 yields
\[
\neg P \lor \neg Q \equiv \neg P \lor Q \equiv \neg P
\]
With Theorem 10 this yields
\[
\neg(\neg P \lor \neg Q) \equiv \neg P \lor Q \equiv P
\]
and with

Abbr. 1 \(\neg(\neg P \lor \neg Q) \equiv P \land Q \).

Theorem 11 \(P \land Q \equiv \neg P \lor Q \equiv P \).

In the sequel, appeals to Abbr. 1 and Theorem 7 will often be summarized by referring to the Law of de Morgan.

Substitution of \(P \land Q \) for \(Q \) in Axiom 1 yields
\[
P \lor (P \land Q) \equiv P \lor (P \land Q) \equiv P
\]
With de Morgan's Law
\[
P \lor \neg P \lor \neg Q \equiv P \lor (P \land Q) \equiv P
\]
With Abbr. 0, Theorems 4 and 0 we generate

Theorem 12 \(P \lor (P \land Q) \equiv P \).
Interchanging in Axiom 1 \(P \) and \(Q \) gives
\[Q \lor P \equiv P \lor Q \equiv Q \]
which yields with Axiom 1

\textbf{Theorem 13} \(P \equiv Q \equiv Q \lor \neg P \equiv P \lor \neg Q \)

Applying Theorem 12 we derive from Theorem 13
\[P \equiv Q \equiv Q \lor (Q \land P) \lor \neg P \equiv P \lor \neg Q \]
with de Morgan's Law
\[P \equiv Q \equiv \neg (P \lor Q) \lor (Q \lor P) \equiv P \lor \neg Q \]
and applying Theorem 11, we generate

\textbf{Theorem 14} \(P \equiv Q \equiv (P \lor \neg Q) \land (Q \lor \neg P) \)

Note Theorem 14 corresponds to the Hilbert-Ackermann definition of equivalence. (End of Note.)

From Theorem 4 we derive
\[Q \lor \neg R \lor \text{black} \]
from which we generate with Abbr. 0
\[Q \lor P \lor R \lor \neg P \]
which yields with Theorem 8 (twice)
\[Q \lor (Q \lor P) \lor R \lor (R \lor P) \]
which yields with de Morgan's Law

\textbf{Theorem 15} \((Q \land P) \lor (R \land \neg P) \lor (Q \lor R) \)

Note Theorem 15 corresponds to the last axiom of Hilbert-Ackermann

\[(P \Rightarrow Q) \Rightarrow ((P \lor R) \Rightarrow (Q \lor R)) \]

(End of Note.)
Now comes a trivial section that I shall only indicate. With

\[\neg \text{black} \equiv \text{white} \]

we leave it to the reader to generate—mostly with

de Morgan’s law—all sorts of useful theorems such as

\[\neg Q \land \neg Q \equiv \text{white} \]
\[P \land P \equiv P \]
\[P \land \text{white} \equiv \text{white} \]
\[P \land \text{black} \equiv \neg P \]
\[P \land (\neg P \lor Q) \equiv P \land Q \]
\[P \land (P \lor Q) \equiv P \]

So far I did not succeed in generating, say

\[(P \equiv Q) \land (P \equiv R) \equiv (P \equiv Q) \land (Q \equiv R) \]

or the distributivity of \(\land \) and \(\lor \). I have tried whether I could modify my axioms—currently, none of them contains three variables—but did not succeed. The obvious alternative is the generalization of Leibniz’s Rule: if \(Q \) could be generated in the additional presence of \(P \), we allow ourselves to generate \(\neg P \lor Q \).

Since I don’t want to become a logician I had better stop; in any case I have had my fun.

Plataanstraat 5
5671 AL NUENEN
The Netherlands

24 October 1982
prop. dr. Edsger W. Dijkstra
Burroughs Research Fellow