\[|x_n| = x_{n-1} + x_{n+1} \text{ has period } 8. \]

This morning I heard the at first sight surprising theorem that the sequence of real numbers \(x_n \) \((-\infty < n < \infty)\) such that \(|x_n| = x_{n-1} + x_{n+1}\) has a period of length 8. Here is my proof.

Since \(x_{n-1} + x_{n+1} \geq 0 \), there exists an element \(x_i \) such that \(x_i \geq 0 \). Since \(x_i + x_{i+1} \geq 0 \), \(x_{i-1} \geq 0 \) or \(x_{i+1} \), i.e. the sequence contains two successive elements \(p \) and \(q \), such that \(p \geq 0 \) and \(q \geq 0 \). Without loss of generality we may choose \(p < q \). But this means that the sequence contains 3 consecutive nonnegative elements \(p \), \(q \), \(q-p \), or, after renaming \(p \), \(p+r \) or \(p-r \) for nonnegative \(p \) and \(r \). Let \(r < p \) and let us extend the sequence in the direction of \(r \) - since the relation for \(x_n \) is symmetric in \(x_{n-1} \) and \(x_{n+1} \), the direction of indexing is irrelevant.

With \(x_0 = x_9 \) and \(x_1 = x_{10} \), the theorem has been proved without case analysis.

\[\begin{align*}
x_0 &= p & (x_0 \geq 0) \\
x_1 &= p+r & (x_1 \geq 0) \\
x_2 &= r & (x_2 \geq 0) \\
x_3 &= -p & (x_3 \leq 0) \\
x_4 &= p-r & (x_4 \geq 0) \\
x_5 &= 2p-r & (x_5 \geq 0) \\
x_6 &= p & (x_6 \geq 0) \\
x_7 &= r-p & (x_7 \leq 0) \\
x_8 &= -r & (x_8 \leq 0) \\
x_9 &= p & (x_9 \geq 0) \\
x_{10} &= p+r & (x_{10} \geq 0)
\end{align*} \]

29 August 1983

prof. dr. Edsger W. Dijkstra
Burroughs Research Fellow
Platoostraat 5
5671 AL NUENEN
The Netherlands