The regularity calculus: a first trial

We consider regular expressions built from a constant, letters from an dphabet and three constructors.
Axiom 0 Each letter is a regular expression
In the sequel, a, b, and c are variables of type "regular expression".
Axiom 1 The expression $a \| b$ is regular. The infix operator (-pronounced "bar" - is symmetric, idempotent, and associative, ie.

$$
\begin{aligned}
& a\|b=b\| a \\
& a \| a=a \\
& (a \| b) D c=a \|(b \| c)
\end{aligned}
$$

Syntactic convention. In view of the associativity of D we allow ourselves the omission of parentheses. Of our three constructors, D is given the lowest binding power. (End of Syntactic convention.)

On regular expressions the relation \leqslant-pronounced "at most" - is defined by

$$
a \leqslant b \equiv a \| b=b
$$

Theorem 0 The relation \leqslant is reflexive: $\quad a \leqslant a$
transitive: $\quad a \leqslant b \wedge b \leqslant c \Rightarrow a \leqslant c$
antisymmetric: $a \leqslant b \wedge b \leqslant a \Rightarrow a=b$
Note that reflexivity and antisymmetry can be com. bined into $a \leqslant b \wedge b \leqslant a=a=b$.

Proof Reflexivity follows from the idempotence of D, transitivity follows from the associativity of D, and antisymmetry follows from the symmetry of D. (End of Proof.)
Theorem 1 The \| is monotonic, ie.

$$
a \leqslant b \Rightarrow a\|c \leqslant b\| c
$$

Proof $a \leqslant b$

$$
\begin{aligned}
= & \{\text { def. of } \leqslant\} \\
& a \| b=b \\
\Rightarrow & \{\text { Leibniz }\} \\
& a\|b \rrbracket c=b\| c \\
= & \{\text { properties of } \|\} \\
& (a \| c) \|(b \| c)=(b \| c) \\
= & \{\text { def. of } \leqslant\} \\
& a\|c \leqslant b\| c \quad \text { (End of Proof.) }
\end{aligned}
$$

We introduce the constant 0 as special regular expression: it is the unit element of D :

Axiom 2 The expression 0 is regular and satisfies $0 \| a=a$ or, equivalently, $0 \leqslant a$.

Our second constructor, called "concatenation", indicated by juxtaposition and not pronounced, is introduced by
Axiom 3 The expression $a b$ is regular. The (invisible) infix operator is associative, ie.

$$
(a b)_{c}=a(b c)
$$

Syntactic convention. In view of the associativity of concatenation we allow ourselves the omission of parentheses. Concatenation has a higher binding power than the 0 , ie. $a b\|c=(a b)\| c$. (End of Syntactic convention.)
Axiom \leq Concatenation distributes in both directions over the II, ie.

$$
\begin{aligned}
& (a \| b) c=a c \| b c \\
& a(b \| c)=a b \| a c
\end{aligned}
$$

Theorem 2. Concatenation is monotonic in both its arguments, ie.

$$
\begin{aligned}
& a \leqslant b \Rightarrow a c \leqslant b c \\
& b \leqslant c \Rightarrow a b \leqslant a c
\end{aligned}
$$

Corollary 0. $a \leqslant b \wedge c \leqslant d \Rightarrow a c \leqslant b d$
Proof $a \leqslant b$

$$
=\{\text { def. of } \leqslant\}
$$

$$
a \| b=b
$$

$$
\Rightarrow\{\text { Leibniz }\}
$$

$$
(a \| b) c=b c
$$

$$
=\{\text { Axiom } 4\}
$$

$$
a c \prod_{0} b c=b c
$$

$$
=\{\text { def. of } \leqslant\}
$$

$$
a c \leqslant b c
$$

$$
\begin{aligned}
& b \leqslant c \\
= & \{\text { def. of } \leqslant\} \\
& b \| c=c \\
\Rightarrow & \{\text { Leibniz }\} \\
& a(b \| c)=a c \\
= & \{7 \times i o m \\
& a b \| a c=a c \\
= & \{\text { def. of } \leqslant\} \\
& a b \leqslant a c
\end{aligned}
$$

(End of Proof of Theorem 2.)

Axiom 5 $\quad 0 a=0$ and $a 0=0$
For concatenation, a single unit element is introduced; we denote it by 1 , which will shortly be recognized as an abbreviation.
Axiom 6 The expression 1 is regular and satisfies $1 a=a$ and $a 1=a$.
(Expressions 0 and 1 differ from each other and from all the letters.)

Our last constructor, called "closure", indicated by a postfix." with highest binding power and pronounced "star", is introduced by
Axiom $7(a \| b)^{*}=\left(a^{*} b^{*}\right)^{*}$
Axiom 8 $(a b)^{*}=1 \| a(b a)^{*} b$
Theorem $3 \quad O^{*}=1$
Proof true

$$
\begin{aligned}
= & \{A \times \cdot 8 \text { with } b:=0\} \\
& (a 0)^{*}=1 \| a(0 a)^{*} 0 \\
= & \left\{A_{x} 5, \text { twice }\right\} \\
& 0^{*}=1 \| 0 \\
= & \{A \times .2\}
\end{aligned}
$$

$$
0^{*}=1 \quad \text { (End of Prof.) }
$$

Theorem 3 justifies our characterization of 1 as "an abbreviation".

Theorem 4 The ${ }^{*}$ is idempotent, ie. $\quad a^{*}=a^{* *}$.
Proof true

$$
\begin{aligned}
= & \{\text { Axiom } 7 \text { with } b:=0\} \\
& (a, \| 0)^{*}=\left(a^{*} 0^{*}\right)^{*} \\
= & \{\text { Axiom } 2 \text { and Theorem } 3\} \\
& a^{*}=\left(a^{*} 1\right)^{*} \\
= & \{A x i o m 6\} \\
& a^{*}=a^{* *} \quad \text { (End of Proof.) }
\end{aligned}
$$

Theorem 4 justifies the name "closure".
Theorem $5 \quad 1=1^{*}$
Proof true

$$
\begin{aligned}
= & \{\text { Theorem } 4 \text { with } a:=0\} \\
& 0^{*}=0^{* *} \\
= & \{\text { Theorem } 3\} \\
& 1=1^{*}
\end{aligned}
$$

(End of Proof.)
Theorem 6 $\quad a^{*}=1 \| a a^{*} \quad$ and $b^{*}=1 \| b^{*} b$.
Proof From Axiom 8 by $b:=1$ and $a:=1$ respectively, and Axiom 6. (End of Proof)

Theorem $7 \quad a^{*}=a^{*} a^{*}$
Proof true
$=\left\{\right.$ Theorem 6 with $\left.a:=a^{*}\right\}$

$$
\begin{aligned}
& a^{* *}=1 \| a^{*} a^{* *} \\
= & \{\text { Theorem } 4\} \\
& a^{*}=1 \| a^{*} a^{*} \\
= & \{\text { Axiom } 6\} \\
& a^{*}=11 \| a^{*} a^{*}
\end{aligned}
$$

\{Corollary 0 and $1 \leqslant a^{*}$ from Theorem 6\} $a^{*}=a^{*} a^{*}$. (End of Proof.)
Theorem $8 \quad a \leqslant a^{*}$
Proof true
$=\{$ Theorem 6, unfolding once $\}$

$$
a^{*}=1 \| a\left(1 \| a a^{*}\right)
$$

$$
=\{\text { Axiom } 4 \text { and } A x \text { om } 6\}
$$

$$
a^{*}=1\|a\| a a a^{*}
$$

$$
\Rightarrow\{A \times \operatorname{iom} 1\}
$$

$a^{*} \| a=a^{*}$. (End of Proof.)
Theorem 9 Closure is monotonic, ie. $a \leqslant b \Rightarrow a^{*} \leqslant b^{*}$.
Proof Under the assumption $a \leqslant b$, ie. $a \| b=b$, we have to prove $a^{*} \| b^{*}=b^{*}$. Since $b^{*} \leqslant a^{*} \| b^{*}$ is obvious (from Axiom 1), it suffices -on account of Theorem 0 , antisymmetry - to prove $a^{*} \| b^{*} \leqslant b^{*}$ under the assumption $a \| b=b$. We observe for any c

$$
\begin{aligned}
& c=a^{*} \| b^{*} \\
\Rightarrow & \{\text { Theorem } 8\} \\
& c \leq\left(a^{*} \| b^{*}\right)^{*} \\
= & \left\{\text { Axiom } 7, \text { with } a:=a^{*} \text { and } b:=b^{*}\right\} \\
& c \leqslant\left(a^{* *} b^{* *}\right)^{*} \\
= & \{\text { Theorem } 4\} \\
& c \leqslant\left(a^{*} b^{*}\right)^{*} \\
= & \{\text { Axiom } 7\} \\
& c \leqslant(a \| b)^{*} \\
= & \{\text { assumption } a \| b=b\}
\end{aligned}
$$

$c \leqslant b^{*}$. (End of Proof.)
(The above proof is due to Rudolf H. Mak and Stefan Rönn.)

Theorem $10 \quad a \leqslant b^{*} \equiv a^{*} \leqslant b^{*}$
Proof. $a \leqslant b^{*}$
$\Rightarrow\{$ Theorem 9\}
$a^{*} \leqslant b^{* *}$
$=\{$ Theorem 4$\}$
$a^{*} \leqslant b^{*}$

$$
a^{*} \leqslant b^{*}
$$

$\Rightarrow\{$ Theorem 8 \}

$$
a \leqslant b^{*}
$$

(End of Proof.)

* *

The relation c from (a, b) between an expression c and a pair of variables (a, b) is defined as the strongest relation satisfying
0 from (a, b)
a from (a, b) and b from (a, b)
$(c \| d)$ from $(a, b) \equiv c$ from $(a, b) \wedge d$ from (a, b)
$(c d)$ from $(a, b) \equiv c$ from $(a, b) \wedge d$ from (a, b)
c^{*} from $(a, b) \equiv c$ from (a, b).
It allows us to formulate
Theorem $11 \quad c$ from $(a, b) \Rightarrow c \leqslant(a \| b)^{*}$
Proof. The proof is by induction over the syntax. We observe for the base - mainly on account of Theorem 8$0 \leqslant(a \| b)^{*}, a \leqslant(a \| b)^{*}, b \leqslant(a \| b)^{*}$.

For the induction step, we prove under the hypothesis

$$
c \leqslant(a \| b)^{*} \wedge d \leqslant(a \| b)^{*}
$$

(i) $c \| d \leq(a \| b)^{*} \quad$ (Theorem 1 and Axiom 1, idempotence)
(ii) $c d \leqslant(a \| b)^{*} \quad$ (Corollary 0 and Theorem 7.)
(iii) $c^{*} \leqslant(a \| b)^{*} \quad$ (Theorem 10.)
(End of Proof.)
Combining Theorems 10 and 11 we get
Corollary $1 \quad c$ from $(a, b) \Rightarrow c^{*} \leqslant(a \nabla b)^{*}$
From Corollary 1, Theorem 9, and Theorem 0, antisymmetry, we conclude
Theorem $12 a \| b \leqslant c \wedge c$ from $(a, b) \Rightarrow c^{*}=(a \| b)^{*}$.

* *

Intermezzo In the mean time we have discovered a few improvements of the above. We should add

Theorem $1 / 3 \quad a \leqslant a \| b$
Proof true

$$
\begin{aligned}
= & \{\text { Axiom } 1\} \\
& a\|a\| b=a \| b \\
= & \{\text { definition of } \leqslant\}
\end{aligned}
$$

$$
a \leqslant a \| b \text {. (End of Proof.) }
$$

Theorem $2 / 3 \quad a \| b \leqslant c \equiv a \leqslant c \wedge b \leqslant c$
Proof $a \| b \leqslant c$

$$
=\{\text { Theorem } 1 / 3\}
$$

$a \leqslant a\|b \wedge b \leqslant a\| b \wedge a \| b \leqslant c$
\Rightarrow \{Theorem 0 , transitivity\}

$$
a \leqslant c \wedge b \leqslant c
$$

$a \leqslant c \wedge b \leqslant c$
$=\{$ definition of $\leqslant\}$
$a\|c=c \wedge b\| c=c$
$\Rightarrow\{$ Leibniz $\}$

$$
a \|\left(b \|_{c}\right)=c
$$

$=\{$ definition of $\leqslant\}$

$$
a \| b \leq c
$$

(End of Proof.)
In connection with Axiom 2 it would have been appropriate to recall the general
Theorem For a binary operator with a right and a left unit element, the unit element is unique.
Proof ($A, b, b: U L \$ a=a \wedge b \$ U R=b$)

$$
\begin{aligned}
\Rightarrow & \{a:=U R ; b:=U L\} \\
& U L \oiint U R=U R \wedge U L \oiint U R=U L
\end{aligned}
$$

\Rightarrow \{Leibniz $\}$

$$
U L=U R
$$

- (End of Proof.)

The theorem is of equal relevance for Axiom 6 .
We are tempted to replace Axiom 5 by Axiom 5' $\quad a b=0 \equiv a=0 \vee b=0$

The original Axiom 5 would then get the status of a corollary.

In a similar vein we are tempted to strengthen Axiom 6 by adding to it
Axiom 61/2 $\quad 1 \leqslant a b \equiv 1 \leqslant a \wedge 1 \leqslant b$

Theorem 21/2 $\quad 1=a b \equiv 1=a \wedge 1=b$.
Proof $1=a \wedge 1=b$

$$
\begin{aligned}
& \Rightarrow\{A x i o m 6\} \\
& 1=a b \\
& 1=a b \\
& =\{\text { Theorem } 0 \text {, reflexivity }\} \\
& 1 \leqslant a b \wedge 1=a b \\
& =\{\text { Axiom } 61 / 2\} \\
& 1 \leqslant a \wedge 1 \leqslant b \wedge 1=a b
\end{aligned}
$$

$=\{$ monotonicity of concatenation and $A x i o m 6\}$
$1 \leqslant a \wedge 1 \leqslant b \wedge 1=a b \wedge b \leqslant a b \wedge a \leqslant a b$
$\Rightarrow\{$ Leibniz $\}$
$1 \leqslant a \wedge 1 \leqslant b \wedge b \leqslant 1 \wedge a \leqslant 1$
$=\{$ Theorem 0 , antisymmetry\}

$$
1=a \wedge 1=b
$$

(End of Proof.)
We probably need as well
Axiom vi $\quad 1 \leqslant a \| b \equiv 1 \leqslant a \quad v \quad 1 \leqslant b$
Axiom vii $\quad a \leqslant 1 \equiv a=0 \not \equiv a=1$
(With $a:=1$, we derive from Axiom vii $1 \neq 0$.) (End of Intermezzo.)

Further addition:
Theorem $6^{1 / 2} \quad a a^{*}=a^{*} a$
Proof $z=a a^{*}$

$$
=\{\text { Theorem } 6 \text { with } b:=a\}
$$

$$
\begin{aligned}
& z=a\left(1 \| a^{*} a\right) \\
= & \{A x i o m s 4 \text { and } 6\} \\
& z=a \| a a^{*} a \\
= & \{A x i \text { ans } 4 \text { and } 6\} \\
& z=\left(1 \| a a^{*}\right) a \\
= & \{\text { Theorem } 6\} \\
& z=a^{*} a
\end{aligned}
$$

(End of Proof.)

$$
\text { * } \quad * \quad *
$$

We observe

$$
x=(a a)^{*} \| a(a a)^{*}
$$

$\Rightarrow\{$ Leibniz and Axiom 4$\}$

$$
1\left\|a a(a a)^{*}\right\| a(a, a)^{*}=1 \| a x
$$

$=\{$ Theorem 6$\}$

$$
\begin{aligned}
& (a a)^{*}\left\|a(a a)^{*}=1\right\| a x \\
& \left.=\left\{a^{*}\right)\right\} \\
& x=1 \| a x
\end{aligned}
$$

From the above we conclude that the equation

$$
\begin{equation*}
x:(x=1 \| a x) \tag{0}
\end{equation*}
$$

is solved by $(a, a)^{*} \| a(a,)^{*} ;$ on account of Theorem 6, it is also solved by a^{*}. Our axioms so far - see Arto Salomaa "Theory of Automat", 1969 - do not suffice to conclude

$$
\begin{equation*}
(a,)^{*} \| a(a a)^{*}=a^{*} \tag{1}
\end{equation*}
$$

We could try to solve the problem by postulating that (0) has a unique solution, but that would be a mistake, as is shown by the following analysis.
Theorem $13 \quad 1 \leqslant a \equiv a^{*}=a a^{*}$
Proof $a^{*}=a a^{*}$

$$
\begin{aligned}
= & \{\text { Theorem } 6\} \\
& 1 \| a a^{*}=a a^{*} \\
= & \{\text { definition of } \leqslant\} \\
& 1 \leqslant a a^{*} \\
= & \left\{\text { Axiom } \sigma^{\prime} / 2\right\} \\
& 1 \leqslant a \widehat{\alpha} 1 \leqslant a^{*} \\
= & \left\{1 \leqslant a^{*}\right\}
\end{aligned}
$$

$$
1 \leqslant a \quad \text { (End of Proof.) }
$$

We now show that for $1 \leqslant a$ equation (0) is solved by $a^{*} \| a^{*} c$. To this end we observe

$$
\begin{aligned}
& z=1 \| a\left(a^{*} \| a^{*} c\right) \\
= & \{A x i o m 4\} \\
& z=1\left\|a a^{*}\right\| a a^{*} c \\
= & \{\text { Theorem } 6\} \\
& z=a^{*} \| a a^{*} c \\
= & \{1 \leqslant a \text { and Theorem } 13\} \\
& z=a^{*} \| a^{*} c
\end{aligned}
$$

Note that in the above observation we have not made any assumption about c. Since $1 \leqslant 1$,
the above observation with $a:=1$ and $1^{*}=1$. The. orem 5-tells us that the postulate that (0) has a unique solution leads to the conclusion that $1 \| c$ is unique, ie. independent of c. From the idempotence of $\|$ we would then conclude $1 \| c=1$, ie. $c \leqslant 1$ for any c. Axiom vii then tells us that for any c we have $c=0 \vee c=1$. Such a universe, however. is too meagre to our taste: in view of our earlier remark that 0 and 1 differ from all the letters and -Axiom 0 - that each letter is a regular expression, we would be considering the not so interesting situation of an empty alphabet.

