A short sequel to EWD863

In EWD863, I left at the end the derivation of de Morgan's Laws as an exercise to the reader. The following proof, however, is too beautiful to remain unrecorded. I recall - with numbers as in EWD863 - the axioms

\[P \land Q \equiv P \equiv Q \equiv P \lor Q \] \hspace{1cm} (9)

\[P \lor \neg Q \equiv P \lor Q \equiv P \] \hspace{1cm} (14)

and the theorems

\[\neg \neg Q \equiv Q \] \hspace{1cm} (19)

\[\neg (P \equiv Q) \equiv \neg P \equiv Q \] \hspace{1cm} (20)

From (14), we derive with $P := \neg P$ and $P, Q := Q, P$ respectively:

\[\neg P \lor \neg Q \equiv \neg P \lor Q \equiv \neg P \] \hspace{1cm} (14a)

\[Q \lor \neg P \equiv Q \lor P \equiv Q \] \hspace{1cm} (14b)

From those two with Leibniz's Principle (and symmetry of \lor and \equiv)

\[\neg P \lor \neg Q \equiv \neg P \equiv Q \equiv P \lor Q \] \hspace{1cm} (14c)

from that one with (20)

\[\neg P \lor \neg Q \equiv \neg (P \equiv Q \equiv P \lor Q) \] \hspace{1cm} (20a)

and finally with (9)
\[\neg P \lor \neg Q \equiv \neg (P \land Q) \] \hspace{1cm} (25)

With (19) and \[\neg P \equiv \neg \neg P \], which is a syntactic descendant of \[P \equiv P \] -

\[\neg P \lor \neg Q \equiv \neg (P \lor Q) \] \hspace{1cm} (26)

follows readily from (25).

Austin, 2 Dec. 1984

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
AUSTIN, TX 78712 - 1188
United States of America

PS. The single substitution \(P, Q \leftarrow \neg Q, \neg P \) into (14), yielding

\[\neg Q \lor \neg P \equiv \neg Q \lor P \equiv \neg Q \]

would have sufficed in subsequent combination with (14).

(End of PS.)