EWD924.html

Copyright Notice

The following manuscript
EWD 924: On a cultural gap

is held in copyright by Springer-Verlag New York, who have granted
permission to reproduce it here.

The manuscript was published as
The Mathematical Intelligencer 8 (1986), 1: 48-52.

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD924.html

EWD924 - O

On a cultural gap

8n the typical university campus, the typicsl mathematician and the typical
computing scientist live in different worlds: +they don't know each other or, if
they dao, they are not on speaking terms. The purpose of this essay is two-fold,
viz. to give a historical explenation of this phenomenon and to argue that we

should do something about it.

Exhorting the world to mend its ways is always a tricky business, for im-
plicit in the exhortation is always the verdict that the world's ways leave plenty
of room for improvement, a suggestion that is always offensive to the touchy. One
way of gilding the pill is to qualify one's sentences by all sorts of softeners
such as "typical”, "in general", 'on the average", "usually", "not uncommonly",

etc,, for brevity's sake I shall not do so.

At the heart of my historieal explanation lies the thesis that when, now
four decades aga, the electronic computer was sprung on us, we were not ready for

it and that -—people and computers being what they are-—Afiﬁgg?fggé_gqgfugion

wasg unavoidable.

By far the most common way in which we deal with something new is by trying
to relate the novelty to what is femiliar from past experience: we think in terms
of analogies and metaphors. (Even the 5th Edition of the Concise Oxford Oiction-
ary still defines a typswriter as a "machime for printing characters on paper as

_§g§§tiﬁgte_fggmbﬁngygiying"E)HMﬁs long as history evolves along smooth lines, we

get away with that technique, but that technique breaks down whenever we are
suddenly faced with something so radically different from what we have experienced
befare that =2ll analcgies, being intrinsically too shallow, are more confusing

than helpful.,

The only feasible way of coming %o grips with really radical novelty is or-

thogonal to the common way of understanding:' it consists in consciously trying

EWD924 - 1

not to relate the phenomenon to what is familiar from one’'s accidental past, but
to approach it with a blank mind and to appreciate it for its intermal structure.
The latter way of understanding is far less popular than the former one as it
requires hard thinking (and, as Bertrand Russell has pointed out, "Many people
would sooner die than think. In fact they do."). It is beyond the abilities of
those ——and they form the majority-- for whom continucus evolution is the only
paradigm of history: unable to cope with discontinuity, they cannot see it and

will deny it when faced with it.

But such radical novelties are precisely the things technology can confront
us with. The automatic computer was one of them; from the same era, the atom

bomb and —perhaps to a lesser extent-- the pill were two others.

#* *
*

To make matters worse, a few accidents of history increased during the first

two decades the confusion as to what automatic computing was about still further,

When, for instance, computers became available as industrial products, it
was a commercial imperative for the budding computer industry to dissociate its
products as far as possible from any form of mathematics, the latter being
viewed as the pinnacle of "user-unfriendliness". Its sales force accordingly
brainwashed the public, imcluding computing scientists, mathematiciams, peliti-
cians, and managers. (The computer industry even brainwashed its onw management,
which to this very day, even if willing to admit that they find themselves in the
"high-tech" business, would be horrified to learn that its leading technology is

a very mathematical one,)

A confusion of even longer standing came from the fact that the unprepared
included the electronic engineers that were suoposed to design, build, and maintain
the machines., The job was actually beyond the electronic technology of the day,
and, as a result, the question of how to get and keep the physical equipment more
or less in working condition became in the early days the all-overriding concern,

As a result, the topic became --primarily in the USA— prematurely known as

EWD924 - 2

"computer science" ~-which, actually, is like referring to surgery as "knife
science"— and it was firmly implanted in people's minds that computing science

is about machines and their peripheral equipment. Quod non,

We now know that electronic techmnolegy has no more to contribute to computing
than the physical equipment. We now know that a programmable computer is no more
and no less than an extremely handy device for realizing any conceivable mechanism
without changing a single wire, and that the core challemge for computing science
is hence a conceptual one, viz. what (abgtract} mechanisms we can conceive without

getting lost in the complexities of our own making.

Remark The above terse summary of computing science's core challenge calls for
a slight elaboration. I have tried it out at a number of oceasions. Computing
colleagues that know only too well from their own experience what [am talking
about resct with "That's aptly put.” or a similar form of agreement. But I have
alsc learned that, no matter bow apt, it conveys litile to those who have never
seen the kind of complexity I am referring to. Let me, therefore, try to sketch

its nature.

Blocks are made of buildings, buildings of walls, walls of bricks, bricks of
crystals, etc., if you so descire down to the elementary particles consituting the
nuclei. That is, we view the whole as composed of parts, which are in some sense
"smaller" than the whole, and then apply the process recursively to the parts.

We thus arrive at a hierarchical decomposition, the depth of which is some sort
of logarithm of the ration between the "sizes" of the whole and of the ultimate
parts. But the ratio between an hour (for the whole computatiun) and several
hundred nanoseconds (for an individual instruction) is 1010 , a iéfim that nop-~
where else has to be bridged by a single science, digcipline, or technology.
Compared with the depth of the hierarchy of concepts that are manipulated in pro-
gramming, traditicnal mathematiecs is almost a flat game, mostly played on a few
semantic levels , which, moreover, are thoroughly familiar. The great depth of

the conceptual hierarchy —in itself a direct consequence of the unprecedented

power of the equipment-~ is one of the reasons why I copsider the advent of cam-

EWD924 - 3
puters as a sharp discontinuity in our intellectual history. (End of Remark.)

Computers being a radical novelty, it is not amazing that we were not ready

for them. The mathematicians, however, were more than unready.

Mathematicians have the social disadvantage of living in an introverted
world with very much its own values and its own standards for judging merit and
significence, a world which is fertile ground for inbreeding. And that is exactly
what happenend. The well-known definition of geometry (viz. "what the geometri-
cians do") can safely be generalized to their conception of mathematics: as nons
of them had been thinking about automatic computing, automstic computing couldn't

be mathematiecs.

As a subculture, they are not only narrow-minded, they are also very conser-—
vative. They know this themselves, but feel that, as heirs and custodians of an
impressive tradition, they have indeed a lot to conserve. We all grant them that,
but 1 suspect there is another mechanism at work. Mathematics differs from the
other sciences in that the vast majority of its practitioners ——including most of
the outstanding ones-— are heavily engaged in teaching, Teachers regard the
effort spent on instilling habits as their investment and shudder at the thought
of having to undo it. Consequently, they equate without hesitation "convenient"
with "conventional" and, if it had not been for others, we would still be doing
arithmetic in Roman numerals, because that was "easier" since people were used to

it,

The mathematician had a technical disadvantage as well, his professional
values and prejudices having their roots in the late 19th, early EOth century.

He was full of analysis, loved the continuum and the complex plame, and considered

infinity as a prerequisite for mathematical depth, How in the world could computing
have anything to do with him? If he acknowledged the existence of computers at

all, he viswed them as number crunchers, of‘Egssipig_usE as @ tool for his col-
league in numerical amalysis ——if he had onew . (Fo: nunerical analysis, of

which he knew very little, he had at best a mild contempt.} The long and the short

EWD924 - 4

of it is that he disregarded computing completely, strengthened in that attitude
when he noticed that machines were primarily used for business administration,

which was a trivial pursuit anyhow.

Part of the blame should be put on the early scientists that got involved in
computing. They came ——of necessity— from other disciplinmes: they had mostly
been trained as physicist, chemist, or crystallographer (with an occasional
astronomer and metecrologist). They weréhfha computer users of the first hour,
but regrettably the vast majority of them did not transfer their scientific
quality standards to the pfﬁ@ramming that became their major accupation: as soon
as programming is concerned, otherwise respectable scientists suddenly accept to
live by the laws of the mathematical jungle. A generation of "scientific" machine
users has approached the programming task more as solving a puzzle posed by the
machine's manufacturer than as an activity worthy of the techniques of scienmtific
thought. Their logical catch-as-catch-can must have been repulsive to the orderly

mind that the mathematician rightly or wrongly regards as his specialty.,

Part of the blame for the poor image of computing should also be put on the
early Oepartments of Computer Science, as they were called. They were not very
illuminating for the rest of the world as they were very uncertain themselves about
the true nature of their calling. Usually these departments were little more than
ill-considered cocktails of locally available desciplines {and semi-disciplines)
that had some conmection with automatic computing: electronic engineering, come
munication end switching theory, business administration, numerical enalysis, nu-
merical control, library science, artificial intelligence and the like, in short,
such an incoherent bunch of disciplines that the resulting cocktail hardly apnpealed
to the intellectually discerning palate. These premature departments were concerned
with ccnstruction or the various possible application areas of computers; their
problem was that, to begin with, they had to aperate in the perichery of the

science that was yet to emerge.

This discipline, which became known as Computing Science, emerged only when

w0924 - 5

people started to look for what be common to the use of any computer in any appli-
cation. By this abstraction, computing science immediately and clearly divorced
itself from electronic engineering: the computing scientist could not care less
about the specific technology that might be used to realize machines, be it elec—
tronics, optics, pneumatics, or magic. At the same stroke, computing science
separated itself from all the specific problems of embedding computers meaningfully
in some segment of some society —-concerns that, societies being as different as

they are, are almost unavoidably parochial—--

Let me mention ——without any claim to completensss-— some of the highlights

that were to shape computing science as it emerged,

In 1960, trans-Atlantic cooperation resulted in the design of a new pragram-
ming language ALGOL 60. As a vehicle for program design it was a great improve-
ment over its existing competitor FORTRAN end it was immediately accepted as a
standard where the latter was not already entrenched, Much more important than
the programming language itself, however, was the way in which ALGOL 60 had been
defined. The formalism that became known as "Backus-Naur-Form" (or BNF for
short) and was used for a complete recursive definition of ALGOL 60's context-—
free syntax embodied a guantum leap in the rigour of language definition. From

that moment, formal grammars were a corner-stone of computing science.

Then LISP emerged as programming vehicle for symbol manipulation., LISP can

be viewed as a highly successful exercise in the mechanization of applied logic,
For computing science, its cultural significance is that it liberated computing
form the narrow connotations of number crunching by including all formal pro-

cesses —-~from syﬁbqééc qiffggentatiun and ig}ggratian to formal theorem proving—-

as computational activities. T

In the mid-sixties, computing's scope was once more extended with a new

dimension, when we learned how to progrem nondeterministic machines, The origin

of the problem came from the task of designing "operating systems" that would en-

EWDg24 - 6

able the central processor to cooperate with a passibly large numbexr of coupled
but otherwise unsynchronized activities, communication with which would occur at
unpredictable moments. The problem was of a humble, technical origin, but it was
of great significance for computing's culture. The moments of communication be-
tween central processor and peripherals were not only unpredictable, but conse-
quently also irreproducible, and as a result the experimental approach to program-

ming was obviously no longer tenable,

1t was at this stage that the distinction between pragmatic progremming and
scientific design began to appear in the world of programming, What_igrggg EPEWE_ﬁﬁ
"iterative design" is the paradigm for the pragmatist, who believes that his
design will work properly unless faced with evidence to the contrary, upon which
he will seek to improve his design. Among programmers, this finding and fixing
of malfunctionings is known as "debugging" and the (unjustified) faith in its
ultimate convergence was at the time widespread. As a result, the imability of
repeating the experiment in the case of an observed malfunctioning (so as to iden-
tify its cause) came as a shock. The scientific designer, in contrast to the
pragmatist, believes in his design because he knows why it will work properly

under all circumstances.

Thus the ground was prepared for what happened in the late sixties and early
seventies, when firm foundations were laid for reasoning about algorithms, It

has changed the relation between programs and machines: was it formerly the
machines to execute our programs. It has also changed the status of programs:
had they formerly the status of conjectures supported by some experimental evi-
dence, now they could (and zometimes did) attain the status of rigorously proved
thecrems, (Furmerly, books on praogramming used to be recommended by the author's
assertion in the preface that all the programs in his book had been tested on a
computer., In the mid-seventies, the first book appeared that was recommended by
the author's assertion that he had tested none of the programs in his book.,)

The fact that we continue to use the same term "program" for both the conjecture

and the theorem is regrettable, for it is the source of much confusion,

EwWng24 - 7

Computing's last decade is sometimes called the decade of modularity, but
that covers only part of the stery, With aforementioned firm foundations for
reasoning about algorithms we were in principle on familiar mathematical grounds,
but enly in principle: any ambitious sophisticated program, such as, say, a
high-quality compiler, hecomes daunting when viewed as a mathematical object. It
is buge, in its design many, sometimes conflicting, goals have been pursued, and
its final justification often requires many a subtle argument. Some form of
"divide-and-conguer" is clearly indicated. But it is npt a fixed amount of work

that has to be partitioned: anrunfq;jynate_ghgéggmgf_parts can greatly increase

the amount of work at both sides of their boundary! The original impuls for mo-
dularity came from & desire for flexibility, in particular how to subdivide a
sizeable program text into "modules", i.e. clearly confined text segments that
could be replaced by an alternative without compromising the correctness of the
whole program, in very much the same way as we can replace in a mathematical
theory the proof of one of its theorems without affecting the theory as a whole,
But the emphasis has shifted from such mere replaceability to the guestion of
how to break down the whole task most effectively: the demands are such that
elegance is no longer a dispensable luxury, but decides between success and

failure.

So much for a bird's eye view of the emergence of computing as an activity
worthy and in need of the technigques of scientific thought. As mathematics is
unique in the way in which it combines gensrality, precision, and trustworthiness,
it is not surprising that computing science emerged as a discipline of a distinct-

ly mathematical flavour.

Like all tramsitions from craft to science, alsoe this one caused tension and
anxiety, and was not universally welcomed. Computing's craftsmen felt threatened
by it and it has been bitterly resented by many a department of mathematics that
had formerly assumed that computing would never distract or divert its best stu~
dents. But even without that element of competition, some feeling of uneasiness
among the mathematicians is understandable, for computing science, the topic they

have ignored so completely, might have a profound influence on mathematics in

EWD924 - 8

general. It is indeed expected to do se, and to understand why this expectation is

held, we should consider the follewing.

All through the ages, the spectrum of educational practice has known two ex-—
tremes., At the one end we have the guilds, in which knowledge is kept as a well-
guarded secret, and for that reason is never formulated explicitly; the apprentice
joins a8 master for seven meagre years and absorbs the craft by osmosis, so to
speak, At the other end we havé-the university, where the students listen to the
professor, who tries to formulate his knowledge and the key elements of his abili-
ties as explicitly as possible, thus bringing it all out in the public domain,
Along this scale, mathematics occupies a curious, double position, While mathe-
matical results are published and taught quite openly ~-to the extent that many
mathematical curricula are very much "knowledge-oriented"-- , how to do mathematics
is hardly taught explicitly. Mathematical methodology is not a topic of explicit
concern and, as we shall see in a moment, when mathematicians feel threatened,
they do so in their capacity of members of their guild. In passing we note that
it is not so much that they are unwilling to teach how to do mathematics, but that

they are unable to teach 4it, not knowing how they do it themselves.

Along comes computing science as a mathematical discipline, but in a few
important aspects very different from the average one. Firstly it is much less
knowledge-oriented; this is probably a consequence of the fact that, while
knowledge is always about a specific area, the computer truly deserves the epi-
theton "general~purpose". Secondly, formal logic, and formal techniques in
general, play a much more important role: this is (i) because formal techniques
are indispensable to control the type of complexity a programmer has to deal with,
(ii) because, by virtue of its mechanical interpretability, any orogramming lan-—
guage represents a formal system of some sorit, and (iii) because symbol manipule-—

tion as mechanical processing of uninterpreted formulae comes very natural to

the computing scientist. Thirdly, it is a discipline in which methodological

questions are a central, explicit concern, The latter two charscteristics are,

of course, closely related: in a formal argument ——whether mechanized or notew

EwWD924 - 9

the structure of the argument is given so explicitly that you cannot avoid

seeing it. 0Or, to put it in another way, the reason why today's average mathe-
matician does not know how he does mathematics and hence is unable to teach how
to do it, is because he relies so heavily on informal arguments: informality is

the hallmark of the mathematical guild member.

In the relation between mathematics and computing science, the latter has
been for many years at the receving end, and I have often asked myself if, when,
and how computing would ever be able to repay its debt. And slowly, the picture

of the answer emerged.

The liberation of logic from the philosophical obligation of mimicking how
people are wont to reason has opened the way for the design of effective calculi,
thereby greatly extending the range of applicability of formal technigues.
Besides being of technical importance, that development is of cultural signifi-
cance, as arguments made fully explicit in such neutral fashions provide the
tangible subject matter of a teachable mathematical methodology: the secret

craft of the guild is on the verge of being taken inta the public domain.

In a remarkable instance of foresight, this was seen as early as 1967 by

John McCarthy (of Stanford University) when he wrote:

"It is reasonable to hope that the relationship between computation and
mathematical logic will be as fruitful in the next century as that between
analysis and physics in the last. The development of this relationship

demands a concern for both applications and for mathematical eslegance.”

The only thing to add is that now, almost two decades later, we dare to go a bit
further and dare to include mathematics in general., This is because the analogy
between programs and proofs is getting closer and closer. Thig has been seen

on theoretical grounds by the logician Per Martin-L#f and made him write:

"It [= the creation of high-level languages of a sufficiently clean logical

structure] has made programming an activity akin in rigour and beauty to

EwD924 -« 10

that of proving mathematical theorems. (This analogy is actually exact in

@ sense that will become clear later.)"
and also

"In fact, I do not think that the search for high-level programming languages
that are more and more satisfactory from a logical point of view can stop
short of anything but a language in which (constructive) mathematics can be

adequately expressed.”

In addition and independently, the analogy between programs and proofs has
been convincingly forced upon us by guite practical experiences, which go beyond
existence proofs iﬂ_ﬁhe form of programs that construct the objects in question,
Properties of possibly non-constructively defined objects have been elegantly
derived from programs constructing those objects, using the standard techniques
of designing and manipulating programs {e.g. showing that a function is its own
inverse by manipulating a program computing it wntil the program is symmetric in
its input and output). And, one step further, the techniques of program design
have equally successfully been applied to proof design; it is in particular that
last experience that strongly suggests that programming methodology and methema-

tical methodology are not that far apart at all.

Posing as a respectable scientist, I should abstain from crystal gazing in
public, but I do see the possibility of a fascinating future in which the quality
af the work of the computer scientists and of the mathematicians will be an order
of magnitude better than it is now. It is a future in which we don't only agree
that mathematical elegance is important but will also teach its conscious pursuit.
[t is a future in which we don't only agree that a good notation helps, but in
which we actually teach how to design notetions that are geared to the manipulative
needs at hand. It is a future in which programs will display all the beauty of
a crisp argument, and in which the dictionaries will no longer define mathematics
as the “abstract science of space, number, and guantity" (Concise Oxfard Dicticnary)

but as the "art and science of effective reasoning".

Ewnoz24 - 1

Austin, 13 September 1985

prof.dr.fdsger W.Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712 - 1188

United States of America.

The above text, for which EVWD913 was a draft, has been written for "The Mathematical

Intelligencer", I have thought about the inclusion of the Game of Stanley Gill

(by way of gem):

The Game of Stanley Gill is played with four integer variables = , vy, u,

and v and two positive integer constamts X and Y . The opening position of
the game i3 X=X, y=Y, u=X, and v =Y and consists in playing the

following move as often as possible:
if x<y , decrease y by x and increase v by u
if y<x , decrease x by y and increase u bhy v .

The game ends with x =y , (x +ry)/2 = gcd(X,Y) , and (u + v)/2 = sem(X,Y) ,

conclusions which follow from the fact that each move maintains:

O < x

O<y

gcd(x,y) = gcd(X,Y)

Xov + y.u = 2X.Y .

£%WD

	EWD924:

