On a problem posed by M.R. Khalil (for the record)

For some positive integers N and L it is asked to generate -print- in lexical order the integer sequences $f(i:0 \leq i < N)$ satisfying

(0) $(A_i: 0 \leq i < N: 0 \leq f_i < L)$
(1) f is ascending, i.e. $(A_{i,j}: 0 \leq i < j < N: f_i \leq f_j)$

An f-sequence containing n different values $(1 \leq n \leq L)$ can be represented by two sequences of length n, v (of values) and fr (of frequencies) satisfying

(2) $(A_i: 1 \leq i \leq n: 0 \leq v_i < L)$
(3) v is ascending
(4) $(A_{i,j}: 1 \leq i \leq n: 1 \leq fr_i)$
(5) $(\sum_{i: 1 \leq i \leq n: fr_i}) = N$

and coupled to f by

(6) $(A_{i,j}: 1 \leq i \leq n: (E_{j,k}: (A_{k,j}: j \leq k < j + fr_i: f_k = v_i)))$

Since $n \leq \min(N,L)$, n is at most N and may be much smaller. From given v- and fr-sequences, the corresponding f-sequence is generated by the following (trivial) block

```
"print f": " var i : int; i=0
  do i\neq n -> " var j : int; j=0; i=i+1
    do j\neq fr_i -> print(v_i); j=j+1 od ]
  od
]
```
The program is

\[\text{\| \text{var} \ n: \text{int}; \ \text{var} \ v, tfr: \text{array of int} }\]
\[; \ n:=1; \ v.1:=0; \ tfr.1:=N \]
\[; \ \text{do} \ n \neq 0 \rightarrow \]
\[; \ \text{\| \text{var} \ tv, tfr: \text{int}; \ "print f" }\]
\[; \ \text{if} \ v.n < L-1 \rightarrow \ tfr:=1 \]
\[\rightdownarrow \ v.n = L-1 \rightarrow \ tfr:=fr.n + 1; \ n:=n-1 \]
\[\rightdownarrow \{ \text{n}>0 \rightarrow \ v.n < L-1; (S2:1 \leq i \leq n; fr.i) + tfr = N+1 \} \]
\[; \ \text{if} \ n=0 \rightarrow \ \text{skip } \{ \text{successor construction aborted} \} \]
\[; \ n>0 \rightarrow \ tv:=v.n + 1 \{ tv<\text{L} \} \]
\[; \ \text{if} \ fr.n > 1 \rightarrow fr.n:=fr.n-1; \ n:=n+1 \]
\[\rightdownarrow \ fr.n = 1 \rightarrow \ \text{skip} \]
\[\rightdownarrow \ v.n := tv; \ fr.n := tfr \]
\[\| \]
\[\| \]

The point of the \((v,fr)\)-representation is that the lexical successor can be constructed without repetition. The point of the above program is the separate successive determinations of the "top frequency" and the "top value".

Nuenen, 15 August 1985

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
United States of America