EWD1015 - @

Position paper on "fairness"

Life is a very complicated business if you want to do it well. This is
because anything of any importance is always a many-sided affair and none of
its different aspects may be neglected, while at the same time, in order to do
the whole job well, the different concerns have to be separated as ruthlessly
as passible.

Before embarking on a major research topic, you had better choose your
target very carefully because the borderlinme between the insipid and the impossiole
is very thin. 1In other words, you had better be fully aware why you engage your-
self on the project. At the same time you had better separate that concern entirely
from the technical question of how to achieve your goal. The why and the how
are completely distinct concerns, and nothing is gained by mixing the two. On
the contrary.

Let us accept as Thesis that the research of a Computing Scientist is even-
tually concerned with automatic computing. 7That leaves a wide range: from impro-
ving the equipment to improving our abilities of using the equipment. In one
way or another, automatic computers and their usage provide the soil in which
our "why" has its roots. Fine.

But in order to do your research successfully, you also have tc think very
carefully about how to conduct your research, and this time because the borderline
between success and failure is preciously thin. And in carefully thinking about
your "how" you will almost certainly discover that in major parts of your investi-
gations automatic computers, with all their quirks and physical limitations,

are totally irrelevant and had better be forgotten.
¥

*
*

One area in which it has praved to be very fruitful to forget that automatic
computers exist is programming. One forgets that computers exist, one ignores
that one's programs admit --in another world, so to speak-- the interpretation
of executable code and treats the program text as a mathematical object in its
own Tight. All by itself it is not a very interesting object, but in combination
with its functional specification, the statement that the program meets its func-
tional specification is a theorem. Af that intellectual level, programming is
about how to design such theorems and their proofs. And from sad experience
we all know that this activity reveals a core challenge, if not the core challenge,
of computing science, viz. "How not to make a mess of it and how not to get confused
in the complexities of one's one making.".

What is at that level the role of the programming language used? Essentially
only one, viz. to defime the proof obligations engendered by presenting the
combination of program and funtional specification as a theorem.

In this part of the exercise it is clearly totally irrelevant whether the
programming language used to express this theorem has been implemented. It is
even irrelevant whether wiwesker an economically acceptable implementation is
technically feasible.


../transcriptions/EWD10xx/EWD1013.html

ewb1015 - 1

Let me elaborate for a short while. I have to respect the strictly limited

size of my head and can deal with only one thing at a time. This means that
~in designing my program the fixing of certain details will have to be postponed;

it also means that meeting certain proof obligations will be postponed. Such
"abstract" programs often distinguish themselves by the inclusion of some powerful
statements that almost certainly defy automatic implementation, and they are
usually grossly nondeterministic. I may, for instance, meet a proof obligation
whose operational interpretation is that the nondeterminacy gives so much freedom
that there exists a scheduling that does not lead to deadlock. That at the same
time an implementation that would avoid deadlock defies imagination should not
deter me at all. Implementation is only an operational concern that plays no
role in the theorem I am developing.

A totally new set of considerations enters the picture by the time that
I would like to use my theorem in the sense that I would like to have my program
executed because I am interested in the result of the ensuing computations. For
that purpose the programming language I wrote the program in has to be implemented
on a sufficiently powerful machine. And suddenly the language definition appears
in a totally different light. It gives the implementer rights and obligations;
he has the right to refuse successful completion of the execution of programs
in which syntactic or semantic constraints have been viclated, he has the obligation
to generate --within the capacity of the machine-- computations meeting the speci-
fication. In this sense, a programming language emerges as a contract between
programmer and implementer, stating the rights and the obligations for both partners
in the deal. If the programmer has met his proof obligations, he is entitled
to the correct results; the implementer has the obligation to see to it that
the correct result is produced, but has the right to refuse programs violating
the stated constraints.

Let us now consider the little program fragment

o

:= true
b -- print(D)
b -- print(1); b:= false

O /o
[Aatc

While still dealing with abstract programs I am perfectly willing to accept this

as a program that prints an arbitrary number of zeros and stops after the printing
of the first one. I am even willing to accept this as a program that under the
assumption of a sufficiently benevolent scheduler will, socner or later, print

that one and then stop. Such "behaviour" is thinkable and at that level thinkabil-
ity is the only thing that matters. (I may add that my willingness has been

a very active one. Inclusion of unbounded nondeterminacy amounts to the loss

cf or-continuity; how to design proofs that do not rely on or-continuity has

been one of my more recent contributions.)

So far, so good. But things change drastically as soon as we start talking
about an implemented programming lanmguage. Then the programming language emerges
as a contract stating rights and obligations, and there are such things as void
aobligations.

I call an obligation void if it is impossible to detect if it has not been
fulfilled. I can easily promise to think at least three times per week about
you, but that is a very cheap promise because no one will ever be able to show
that I failed to fulfil my commitment. As a promise it is void.



EWG1013 - 2

Assume now that the language definition is such that above programming
fragment is to print a finite string of zeros of arbitrary length followed by
a one. This would be the prototype of a void obligation for the implementer.
Firstly, nothing prevents him from implementing it in a way semantically equi-
valent to

bi= true
; do b -- print(1); b:= false od

As user of his system you may be dissappointed that it never prints a zero, but
the implementer can shrug his shoulders and say "You must have had bad luck!
Try again.”. What you may consider as a regrettable breach of contract on his
part won't cause the implementer a single sleepless night because he knaws that
, though his obligation was void, he has fulfilled it. After all, zero is one
of the arbitrary numbers.

Secondly, suppose that you pester him and start threatening with a law suit if
you don't see any zeros printed. This time the implementer agrees to change
the scheduler, and now he implements the fragment semantically equivalently to

b:= true
; do b —- print(0) od

And now we are in the paradoxical situation that the implementer knows that

he has violated the contract, for he knows that his product will never print

a one. At the same time he knows that, no matter how many experiments you take,
now matter how many instances of his program you start, you will never be able
to produce the evidence that he has violated the contract. So, again you won't
cause him a single sleepless night.

The moral of the story is that void obligations should not occur in contracts.

Finally I would like to point out that in the case of fairness the imple-
mentor's situation is drastically different from that of the quality controller
in a roulette factory. There is no experiment that he can take to assure that
a roulette coming out of the factory is unmbiased. With a perfectly fair roulette
it is possible that each time he turns the roulette and throws the ball, the
ball will end up at zero. Unlikely, but perfectly possible. Therefore the quality
assurance man from the roulette factory will never tell you that a roulette is
unbiased: his experiments will tell him the probability that it is unbiased
and if you want thaf probability to be very high, you will have to pay more because
he has to take a longer series of experiments. The dissatisfied customer can
still try to sue the roulette manufacturer, not because he has been cheated by
the latter but only on account of the very high probability that he has done
so. In a case like that, the conscientious judge can give the roulette manufacturer
only a probabilistic fine; whether or not it should be paid can be settled by
the roulette in guestion.

But fairness is not a probabilistic notion and if the implementer is sued,
he will be acquitted for lack of evidence. My conclusion from the above is that
fairness, being an unworkable notion, can be ignored with impunity.

prof.dr.Edsger W.Dijkstra Austin, 14 October 1987
Department of Computer Sciences

The University of Texas at Austin

Aystin, TX 78712 - 1188

USA



