Ping-pong arguments and Leibniz's principle

Let \downarrow denote an idempotent, symmetric, and associative infix operator; it is given a higher binding power than the relational operators.

In terms of \downarrow we define a relation \preceq by postulating for any x, y

$$(0) \quad x \preceq y \equiv x \downarrow y = x \quad .$$

We would like to prove for any w, x, y

$$(1) \quad w \preceq x \downarrow y \equiv w \preceq x \land w \preceq y \quad .$$

Applying (0) three times to eliminate the \preceqs, we rewrite demonstrandum (1) as

$$(2) \quad w \downarrow x \downarrow y = w \equiv w \downarrow x = w \land w \downarrow y = w \quad .$$

We use Leibniz's Principle in the form

$$a = b \land f. a \Rightarrow f. b$$

and proceed to prove (2) by a ping-pong argument. For pong we observe for any w, x, y

$$w \downarrow x = w \land w \downarrow y = w \Rightarrow$$

$$\{ \text{Leibniz}\}$$

$$(w \downarrow x) \downarrow y = w$$

$$= \{ \downarrow \text{associative}\}$$

$$w \downarrow x \downarrow y = w \quad .$$
For ping we only prove (for brevity's sake) \(w \downarrow x \downarrow y = w \Rightarrow w \downarrow x = w \) by observing

\[
\begin{align*}
 w \downarrow x \downarrow y &= w \\
 &= \{ \text{predicate calculus} \} \\
 w \downarrow x \downarrow y &= w \land w \downarrow x \downarrow y = w \\
 &= \{ \downarrow \text{ idempotent} \} \\
 w \downarrow x \downarrow y &= w \land w \downarrow (x \downarrow x) \downarrow y = w \\
 &= \{ \downarrow \text{ symmetric and associative} \} \\
 w \downarrow x \downarrow y &= w \land (w \downarrow x \downarrow y) \downarrow x = w \\
 \Downarrow & \{ \text{Leibniz} \} \\
 w \downarrow x &= w
\end{align*}
\]

It was a pleasant surprise to see that (1) had a simpler proof via (2) than via all sorts of other properties of \(\preceq \). The reason for recording the proof, however, is that its structure reveals Leibniz's Principle as a generator of ping-pong arguments. (Moreover, for a lecture on Leibniz's Principle, it is a very nice example.)

Austin, 3 September 1994

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA