A theorem about "factors" perhaps worth recording.

Let \(\setminus \) be defined by

(0) \[[x; y \Rightarrow z] \equiv [y \Rightarrow x \setminus z] \]

(0) defines \(x \setminus z \) as the weakest solution of

\(y: [x; y \Rightarrow z] \)

and yields with instantiations \(y := x \setminus z \) and
\(z := x; y \) respectively

(1) \[[x; x \setminus z \Rightarrow z] \]

(2) \[[y \Rightarrow x \setminus (x; y)] \]

(We have given \(\setminus \) a higher binding power
than \(; \).)

About the transpose \(\sim \) (prefix) - which
others call the converse \(\circ \) (postfix) - I shall
use the Dedekind Law

(3) \[[x; y \wedge z \Rightarrow x; (y \wedge \sim x; z)] \]

We shall now prove

(4) \[[p; q \wedge \sim p \setminus r \Rightarrow p; r] \]

To this end we observe for any \(p, q, r \)

\[p; q \wedge \sim p \setminus r \]
\[\Rightarrow \{ (3) with x, y, z := p, q, \sim p \setminus r \} \]
\[p; (q \land \lnot p; \lnot p) \]
\[\Rightarrow \{\text{monotonicities}, \ (2) \text{ with } x, z := \lnot p, r \} \]
\[p; r \]

I used (4) to prove the theorem of section 2.3 of "A Graphical Calculus" by Sharon Curtis and Gavin Lowe, Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD; the formulation of (4) was triggered by their note.

An alternative formulation of (4) that incorporates the antimonotonicity of \(\lnot \) in its left argument is

\[(5) \quad [\lnot p \Rightarrow s] \Rightarrow [p; q \land s \Rightarrow p; r] \]

I think the theorem is worth recording though not worth remembering.

Austin, 15 May 1995

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA