"I have a proof that...."

This is about an observation of a type that I don't particularly like to make, but once the observation has been made, it had better be recorded. In the following, A and B stand for propositions for which I may have a proof.

Consider statements a0 and a1:

(a0) I have a proof that \textbf{true} (holds)
(a1) \textbf{true} (holds).

Then, a0 and a1 are equivalent. (Since —by definition— the proof that \textbf{true} (holds) is empty, it is impossible not to have it.)

Consider statements b0 and b1:

(b0) I have a proof that \textbf{false} (holds)
(b1) \textbf{false} (holds).

Then b0 and b1 are equivalent. (Since —by definition— the proof that \textbf{false} (holds) does not exist, it is impossible to have it.)

From the above we conclude by case analysis the equivalence of c0 and c1:

(c0) I have a proof that I have a proof
that \(A \) (holds)

(\(c_1 \)) I have a proof that \(A \) (holds).

Consider statements \(d_0 \) and \(d_1 \):

(\(d_0 \)) I have a proof that \(A \land B \) (holds)
(\(d_1 \)) I have a proof that \(A \) (holds) and I have a proof that \(B \) (holds).

Then \(d_0 \) and \(d_1 \) are equivalent. (Well, that is what "\(\land \)" (= "and") means.)

This last law can be generalized to universal quantification. Consider statements \(e_0 \) and \(e_1 \) (in which the range for \(n \) is implicitly understood):

(\(e_0 \)) I have a proof that, for all \(n \), \(A \cdot n \) (holds)
(\(e_1 \)) For all \(n \), I have a proof that \(A \cdot n \) (holds).

Then \(e_0 \) and \(e_1 \) are equivalent.

Remark As a result it is semantically irrelevant that the sentence "I have a proof of \(A \cdot n \) for all \(n \)" is syntactically ambiguous. (End of Remark.)

Consider the statements \(f_0 \) and \(f_1 \):

(\(f_0 \)) If I have a proof that \(A \) (holds)
then I have a proof that B (holds)
(g1) I have a proof that, if I have a proof
that A holds, then B (holds).

Then \(p_0 \) and \(p_1 \) are equivalent. (If I don't
have a proof that A (holds), \(p_0 \) and \(p_1 \)
are both "vacuously" true; if I do have a
proof that A (holds), both \(p_0 \) and \(p_1 \)
reduce to "I have a proof that B (holds)."

Remark: As a result it is semantically irrel-
evant that the sentence "I have a proof that
B holds if I have a proof of A." is
syntactically ambiguous. (End of Remark.)

But consider now statements \(g_0 \) and \(g_1 \):

\(g_0 \): I have a proof that \(A \lor B \) (holds)
\(g_1 \): I have a proof that A (holds) or I
have a proof that B (holds) or I
have both proofs.

In this case, the two statements are not
equivalent: \(g_1 \) implies \(g_0 \), but it is in
general not the other way round.

* * * *

Let us now do away with all the above
verbosity and abbreviate "I have a proof
that A (holds)" to "[A]". Our laws
about having proofs can then be summa-
rized as follows:

(a) \[\text{true} \] \equiv \text{true} \\
(b) \[\text{false} \] \equiv \text{false} \\
(c) \[[A] \] \equiv [A] \\
(d) \[A \land B \] \equiv [A] \land [B] \\
(e) \[\langle \forall n :: A.n \rangle \] \equiv \langle \forall n :: [A.n] \rangle \\
(f) \[A \implies B \] \equiv \[[A] \implies B \] \\
(g) \[A \lor B \] \equiv \[[A] \lor [B] \]

The moral of the story is that "I have a proof that..." has all the algebraic properties of the "everywhere" operator, i.e. of universal quantification over a non-empty domain (see [DS90]).

Austin, 15 October 1995

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA