The arithmetic and geometric means once more

In the following, \(x, y, c \) are positive.

In \textit{EWD1140}, I used
\[(0) \quad (x+y)^2 = (x-y)^2 + 4 \cdot x \cdot y \]
to argue that
\[(1) \quad x, y := c, x+y-c \quad , \]
which does not change \(x+y \), increases \(x \cdot y \) provided \(c \) lies between the initial values of \(x \) and \(y \).

In \textit{EWD1171}, I used \((0)\) to argue that
\[(2) \quad x, y := c, x \cdot y/c \quad , \]
which does not change \(x \cdot y \), decreases \(x+y \) provided \(c \) lies between the initial values of \(x \) and \(y \).

In both cases the use of \((0)\) came a little bit as a rabbit and the link between the condition on \(c \) and the decrease of the distance between \(x \) and \(y \) remained informal. Last Thursday, when I asked for an expression that contained both \(x+y \) and \(x \cdot y \), my
An Thai Nguyen suggested that we look at
(c-x)·(c-y), and this expression indeed
plays a central role in the derivations
from which all rabbits have been removed.

* * *

We want to change x, y such that
(i) their sum is not changed, and (ii)
their product is increased. Any assign-
ment satisfying (i) can be written like
(1); in order to satisfy (ii) we now
observe for any c

"(1) increases $x·y$"

\[
= \{ \text{program semantics, (1)} \}
\]

\[
x·y < c·(x+y - c)
\]

\[
= \{ \text{algebra} \}
\]

\[
(c-x)·(c-y) < 0
\]

We now consider the change of x, y
such that (iii) their product is not
changed, and (iv) their sum is decreased.
Any assignment satisfying (iii) can be
written like (2); in order to satisfy (iv)
as well, we observe for any positive c

"(2) decreases $x+y$"

\[
= \{ \text{program semantics, (2)} \}
\]

\[
c + x·y/c < x+y
\]
\[
\begin{align*}
&= \{ c > 0 \} \\
&\quad c^2 + x \cdot y < c \cdot (x+y) \\
&= \{ \text{algebra} \} \\
&\quad (c-x) \cdot (c-y) < 0
\end{align*}
\]

So, in both cases, the completely forced calculations lead in exactly the same form to the conclusion that \(c \) should lie between the initial values of \(x \) and \(y \). The secret is that Nguyen's expression can be rewritten as
\[
\begin{align*}
&\quad x \cdot y - c \cdot (x+y-c)
\end{align*}
\]
and as
\[
\begin{align*}
&\quad (c^2 + x \cdot y) - (c \cdot x + c \cdot y)
\end{align*}
\]
i.e. the difference of two products with equal sums of their factors, and the difference of two sums with equal products of their addenda. I was surprised.

Austin, 10 February 1996

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188, USA