My Simplest theorem

Theorem Any natural number that has a divisor greater than itself equals zero.

Proof We observe for any natural \(n,d,q \)

\[
 n = d \cdot q \land d > n \\
= \{ \text{Leibniz} \} \\
 n = d \cdot q \land d > d \cdot q \\
= \{ d > 0 \} \\
 n = d \cdot q \land 1 > q \\
= \{ q \text{ is natural} \} \\
 n = d \cdot q \land q = 0 \\
\Rightarrow \{ \text{Leibniz} \} \\
 n = 0
\]

(End of Proof)

At least twice - EWD1088 & EWD1170 - I had used that 0 is the only natural number with infinitely many divisors - e.g. \(2^k \) for any \(k \) -, but I never took the trouble to prove it, and that probably explains why I missed the above.

Austin, 10 February 1996

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA