My Simplest theorem

Theorem Any natural number that has a divisor greater than itself equals zero.

Proof We observe for any natural n, d, q

\[n = d \cdot q \land d > n \]

= \{ Leibniz \}
\[n = d \cdot q \land d > d \cdot q \]

= \{ d > 0 \}
\[n = d \cdot q \land 1 > q \]

= \{ q \text{ is natural} \}
\[n = d \cdot q \land q = 0 \]

\[n = 0 \]

(End of Proof)

At least twice - EWD1088 & EWD1170 - I had used that 0 is the only natural number with infinitely many divisors - e.g. 2^k for any k-, but I never took the trouble to prove it, and that probably explains why I missed the above.

Austin, 10 February 1996

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA