The formula for \(\sin(\alpha + \beta) \)

About circles we use the following lemma: Let arc \(AB \) of a circle with diameter \(d \) subtend at the centre an angle of \(2\varphi \). Then

(i) at any point \(P \) on the remainder of the periphery it subtends an angle of \(\varphi \), and

(ii) the length of chord \(AB \) equals \(d \cdot \sin \varphi \).

[By choosing \(P = P' \) such that \(AP' \) is a diameter, we make \(\angle ABP' \) a right angle and thus see \(AB = d \cdot \sin \varphi \).] For the rest of this note we choose \(d = 1 \).
With the angles at A and B equal to α and β respectively, we have according to our lemma

$BC = \sin \alpha$ \hspace{1em} $AC = \sin \beta$ \hspace{1em} $AB = \sin (\alpha + \beta)$

and now observe, with CD the altitude on AB

\[
\begin{align*}
\frac{\sin (\alpha + \beta)}{\sin \alpha} &= \frac{AB}{AD + DB} \\
&= AC \cos \alpha + BC \cos \beta \\
&= \sin \beta \cos \alpha + \sin \alpha \cos \beta
\end{align*}
\]

which establishes the addition formula for $\sin (\alpha + \beta)$ for $0 \leq \alpha, \beta \leq \pi/2$.

Austin 10 Sep. 1996

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188, USA