The formula for \(\sin(\alpha + \beta) \)

We consider a triangle with sides a, b, c and opposite angles \(\alpha, \beta, \gamma\) respectively:

We have added the altitude CF; the additional annotation follows from the definitions of the sine and cosine functions. We observe

\[
\begin{align*}
\text{true} & \quad \{ \text{the two annotations for } CF \} \\
& \quad \{ \text{algebra} \} \\
& \quad \{ \text{symmetry} \} \\
& \quad a : b : c = \sin \alpha : \sin \beta : \sin \gamma \quad (\star)
\end{align*}
\]

Next we observe

true

\[
\begin{align*}
& \quad \{ \text{annotations for } BF \text{ and } FA \} \\
\end{align*}
\]
\[c = a \cdot \cos \beta + b \cdot \cos \alpha \] \((*) \)
\[\equiv \{ (**) \} \]
\[\sin \gamma = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha \]
\[\equiv \{ \alpha + \beta + \gamma = \pi \} \]
\[\sin (\alpha + \beta) = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha \] \((**) \)

and so we have proved the addition formula \((**) \) for the sine function for \(0 \leq \alpha, 0 \leq \beta \) and \(\alpha + \beta \leq \pi \). (Note that \(\gamma \) does not need to lie between \(A \) and \(B \) for \((*) \) to be valid.)

Austin, 11 September 1996

prof. dr. Edsger W. Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA