An unavoidable case analysis

Archiving old manuscripts, I found at the end of EWD766 "An educational stupidity" of more than 20 years ago the following exercise:

"Prove that none of the decimal numbers 1001, 1001001, 1001001001, 1001001001001, ... is prime." [It is not clear why I underlined "none". EWD]

Here is a proof. Denoting by \(k^{*\text{string}^*} \) the concatenation of \(k \) copies of the digit string enclosed, we deal with the decimal numbers \(k^{*001^*} \) for \(k \geq 2 \)

(i) If \(k \mod 3 = 0 \), the number is, according to the traditional 3-test, divisible by 3 because the sum of its decimal digits, which equals \(k \), is divisible by 3.

(ii) If \(k \mod 3 \neq 0 \), we see by generalizing the traditional 9-test to the \(k^{*9^*} \) test, that the number reduced modulo \(k^{*9^*} \) equals \(k^{*1^*} \). Hence the number is divisible by \(k^{*1^*} \) (because \(k^{*9^*} \) is). (Note that this observation does not exclude primality for \(k=1 \)).

In argument (i), the crux is the validity
of the 3-test, which is valid whenever base \(\mod 3 = 1 \), a condition that base 10 (= ten) satisfies. The conclusion has nothing to do with the accident that the length of the repeated string happens to be 3: for \(k \mod 3 = 0 \), also \(k*00001* \) is divisible by 3.

In argument (ii) we generalized the 9-test because the problem was about decimal numbers, but for any base \(B \) \((B \geq 2) \) there is a \((B-1) \)-test, and \(k*1* \) divides \(k*(B-1)* \). The conclusion that the number reduced modulo \(k*(B-1)* \) yields \(k*1* \), however, depends on the fact that \(k \) has no factor in common with the length of the iterated string. Argument (ii) is base independent: interpreting \(*k001* \) and \(*k1* \) in binary, we find for instance that for \(k=4 \) and \(k=5 \), 585 is divisible by 15 and 4681 by 31.

Argument (i) relies on a relation between \(k \) and the base of the number system, (ii) on a relation between \(k \) and the length of the iterated string.

Austin, 18 March 2001

prof. dr. Edsger W. Dijkstra
Department of Computer Science
The University of Texas at Austin
Austin, TX 78712-1188, USA