UTCS Artificial Intelligence
courses
talks/events
demos
people
projects
publications
software/data
labs
areas
admin
Cho-Jui Hsieh, Inderjit Dhillon,
Pradeep Ravikumar
, and Arindam Banerjee
We consider the composite log-determinant optimization problem, arising from the l-1 regularized Gaussian maximum likelihood estimator of a sparse inverse covariance matrix, in a high-dimensional setting with a very large number of variables. Recent work has shown this estimator to have strong statistical guarantees in recovering the true structure of the sparse inverse covariance matrix, or alternatively the underlying graph structure of the corresponding Gaussian Markov Random Field, even in very high-dimensional regimes with a limited number of samples. In this paper, we are concerned with the computational cost in solving the above optimization problem. Our proposed algorithm partitions the problem into smaller sub-problems, and uses the solutions of the sub-problems to build a good approximation for the original problem. Our key idea for the divide step to obtain a sub-problem partition is as follows: we ﬁrst derive a tractable bound on the quality of the approximate solution obtained from solving the corresponding sub-divided problems. Based on this bound, we propose a clustering algorithm that attempts to minimize this bound, in order to ﬁnd effective partitions of the variables. For the conquer step, we use the approximate solution, i.e., solution resulting from solving the sub-problems, as an initial point to solve the original problem, and thereby achieve a much faster computational procedure.
View:
PDF
Citation:
NIPS
(2012).
Bibtex:
@article{HsiehNIPS2012, title={A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation}, author={Cho-Jui Hsieh and Inderjit Dhillon and Pradeep Ravikumar and Arindam Banerjee}, booktitle={NIPS}, journal={NIPS}, url="http://www.cs.utexas.edu/users/ai-lab/?HsiehNIPS2012", year={2012} }
People
Pradeep Ravikumar
Faculty
pradeepr [at] cs utexas edu
Areas of Interest
Graphical Models
High-dimensional Models
Machine Learning
Statistical Learning
Labs
Statistical Learning