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Abstract—Creating agents that behave in complex and believ-
able ways in video games and virtual environments is a difficult
task. One solution, shaping, has worked well in evolution of
neural networks for agent control in relatively straightforward
environments such as the NERO video game, but is very labor-
intensive. Another solution, coevolution, promises to establish
shaping automatically, but it is difficult to control. Although
these two approaches have been used separately in the past,
they are compatible in principle. This paper shows how shaping
can be applied to coevolution to guide it towards more effective
behaviors, thus enhancing the power of coevolution in compet-
itive environments. Several automated shaping methods, based
on manipulating the fitness function and the game rules, are
introduced and tested in a “capture-the-flag”-like environment,
where the controller networks for two populations of agents are
evolved using the rtNEAT neuroevolution method. Each of these
shaping methods as well as their combinations are superior to a
control, i.e. direct evolution without shaping. They are effective
in different and sometimes incompatible ways, suggesting that
different methods may work best in different environments. Using
shaping, it should thus be possible to employ coevolution to create
intelligent agents for a variety of games.

I. INTRODUCTION

In many games there are non-player characters (NPCs)
intended to be humanoid in both form and function. In order to
make the game interesting, it is important that such characters
behave in interesting and efficient ways. However, creating
such behavior is difficult: Most commonly it is scripted, which
can lead to predictable and inflexible agents. An alternative ap-
proach is to have agents adapt variability: such adaptability can
make the game experience more diverse and therefore more
interesting for the players [14]. While it is conceivable that
such agents could be constructed simply by letting them play
against many human players, currently such experiences are
not extensive enough and learning is not fast enough to make
this approach possible. However, there is another possibility:
having the learning agents play themselves, resulting in much
more situations from which to learn. This is the main idea for
using coevolution to construct intelligent game agents.

In coevolution, a population of agents evolve together with
another population such that their fitnesses are in some way
tied together. When these agents are directly competing with
each other, for example in symmetric head-to-head contests,
or in an asymmetric predator-prey relationship the goal is to
establish a coevolutionary “arms-race” [2]: one population’s

improvements forces the other population to improve, which
in turn forces the other population to improve even more,
and so on. Coevolutionary arms-races can in principle lead
to discovery of complex, original behaviors that can make the
game dramatically more interesting and challenging.

However, such an arms-race is not easy to establish, and
even when it does happen, it may lead to behaviors that
are undesirable or uninteresting. Although much work has
been done to encourage evolution towards better behaviors,
most of it is focused on maintaining the ability to beat the
earlier opponents [1, 9, 10, 15]. This paper explores another
possibility: shaping the coevolutionary process directly by
modifying the fitness function and the environment during
evolution.

In a “capture-the-flag”-like environment, where two teams
compete to gather the most coins, several automated such
methods are evaluated. All shaping methods result in better
performance than not shaping. Interestingly, some of their
combinations are not as powerful as the methods individually,
suggesting that they are utilizing incompatible dimensions of
the task, and further that different methods may work best
in different environments. The main conclusion is thus that
shaping coevolution is a powerful and versatile technique to
create intelligent agents for complex games.

II. RELATED WORK

The individual techniques of coevolution and of shaping
have been known for quite sometime and there has been
significant research done on both subjects. For instance, Rosin
and co-authors [10, 11] introduced competitive fitness sharing,
shared sampling, and Hall of Fame methods of enhancing com-
petitive coevolution, and Stanley et al. developed the NEAT
technique that preserves earlier behaviors in the network
topology evolution [15]. Coevolution is also theoretically well
understood in terms of game-theoretic solution concepts [3, 5].
Similarly, shaping is well understood as an abstraction of
shaping in biology [12]. It is widely used in machine learning,
from supervised learning [4] and reinforcement learning [8] to
evolutionary computation [6, 13], where it is often shown to
make it possible to solve problems where direct learning fails.

However to our knowledge, shaping has not been applied to
coevolution. Shaping (as conceived in the above approaches)
requires a human experimenter to design a schedule of changes
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Fig. 1. The Capture-the-Coins Environment. In this bird’s-eye view of
the game video display, the world is inclosed in a (lightly colored) fence,
the coins appear as small golden dots, and the two teams as blue and red
humanoid robots. The added annotations indicate the spawn/collection areas
for each team as well as the neutral area in the center where the coins are
initially located. The objective is to collect more coins than the opponent
team. This game lends itself to shaping through fitness (i.e. rewarding offense
vs. defense) and the environment (i.e. how many agents are needed around
the coin to capture it).

to the task, whereas coevolution itself can be seen as an
automatic shaping method: the fitness depends on the behavior
of the opposing population, which is gradually becoming
more proficient in a coevolutionary arms-race. It seems that
manually shaping the fitness or the environment at the same
time may interfere with this automatic process, rendering it
ineffective, or unnecessary.

In contrast, the experiments in this paper show that shaping
can indeed improve the power of coevolution. On the other
hand, they also show that the different methods of shaping may
indeed be incompatible. It is therefore important to understand
how they work m in order to select a method most appropriate
for the current task. The environment where such an analysis
was undertaken will be described next.

III. THE CAPTURE-THE-COINS ENVIRONMENT

The goal was to design an environment where offensive and
defensive agents could be easily and clearly defined, and thus
the shaping process would be transparent for both humans
and coevolution. One way to achieve an arms-race in such
an environment, then, is to have the teams alternate between
attacking and defending behaviors.

These considerations led to the Capture-the-Coins environ-
ment, shown in fig 1. It consists of two teams, spawning on
opposite ends of a field, attempting to collect as many coins as
possible. Three coins are initially placed at random locations
in the center area of the field; when a coin is captured, it is
moved to the team’s own end, but still remains available for
the other team to capture. In order to capture a coin with, there
must be more attackers than defenders within its vicinity. If
an agent is located in the enemy trove (as defined in figure 1),

Fig. 2. A sample sensor sector. In this image, the sensors in one of the
eight sectors in the front 180o are shown. Two of the sectors are 90o wide
and sense friendly coins; the remaining six are 30o wide and sense enemy
coins. In addition, each sector senses the number of friends and number of
enemies in the sector. The agent also has one sensor that detects whether the
agents is withing the attack/defend range of a coin.

it is deemed to be behaving offensively; if it is located in its
own trove, it is defending.

The agents have 34 sensor through which it sees the coins,
teammates, and enemies. The sensors are arranged into eight
sectors facing the front 180o of the agent; a sample sector is
shown in figure 2. Two of these sectors are 90o wide and sense
the angle and distance to the closest friendly coin. Overlapping
with these sectors are six sectors that sense the angle and
distance to the closest enemy coin (because attacking coins
requires more accuracy than defending them). In addition, in
each sector there is one sensor for number of enemies detected
in that sector and one for the number of friends detected in
that sector. The agent also has a sensor detecting whether or
not the agent is currently within the attack/defend range of a
coin (which was 5/6th of the distance that the agent can move
in a single time step), and a bias input. These sensors were
determined in preliminary experiments to be as small a set
as possible (allowing for fast evolution), while still allowing
good performance in the task.

As output actions, the agents can turn up to 90 degrees left
or right, and they can move either forward or backward at full
speed, or not at all. The outputs of the networks determine the
actions of the individual agent.

The fitness calculation is a linear combination of offensive
behavior rewards (i.e. those involved in capturing coins in
the enemy trove), and defensive behavior rewards (i.e. those
involved in defending the teams coins in its own trove from
capture by the other team). The reward for capturing is
given once the coin is captured, and split among all agents
within the attack/defend distance. The reward for defending is
given every time step that the coin is being attacked by one
or more enemy agents, but prevented from being captured;
this reward is again split among all the defenders. In this



manner, individual fitnesses were obtained for each member
of the population, measuring how well they contributed to the
success of the team, allowing evolution to generate agents that
cooperated well.

The environment was implemented in the OpenNERO re-
search platform (http://opennero.googlecode.com; [7]). The
agents were controlled by neural networks, evolved with the
rtNEAT (real-time NEAT; nn.cs.utexas.edu/?rtneat; [14]). This
method was chosen because it allows the entire population of
neural network to be evaluated in the game at once, replacing
each of the agents with their offspring one at a time while the
game is going on. Evaluation is therefore highly efficient and
the game is continuous.

IV. APPROACH

In the capture-the-coins environment it is very common for
non-shaped teams to converge to uninteresting and non-diverse
solutions, such as always defending. Further, these solutions
are relatively stable: While the specifics are improved with
time, new strategies or even variances of the existing strategies
do not typically arise. Shaping can be used to counteract this
problem, leading the agents towards a more effective solution.

There are two key factors that can be shaped. The first factor
is the fitness function. This aspect can be very useful for en-
couraging the development of offensive vs. defensive behavior,
i.e. by changing the weights on these two components in the
fitness function. The second factor is the difficulty of capturing
coins, i.e. the percentage of attackers among all agents in the
vicinity of the coin that is needed for capture. If this value
is raised higher than the initial 50%, more than one attacking
agent will be needed to overcome each individual defender;
conversely, a single agent can often successfully defend a
coin. Similarly, if the value is lowered from 50%, a coin
can often be captured by an individual attacker; conversely,
defending it requires teamwork. By changing this ratio, it is
thus possible to encourage either individual performance or
effective teamwork, both in offense and in defense.

In this paper, these two aspects are utilized systematically
through automated shaping methods. Three such methods were
conceived and tested both individually and in combination
with one another (where possible). Unless otherwise specified,
the both offensive behavior and defensive behavior contribute
50% to the total fitness, and a coin is captured if more than
50% of the nearby agents are attackers.

In the first method, Alternating Fitness, every three gen-
erations the fitness function of one team switches from 75%
reward for offensive behavior and 25% reward for defensive
behavior to a 25% offensive and 75% defensive reward, while
the other team switches in the opposite direction. In this
way, at any given point the two teams have opposing fitness
functions, encouraging an arms-race where one team has
several generations to improve their defense while the other
team is being heavily encouraged to attack them.

In the second method, Dynamic Fitness, the fitness weights
are adjusted based on the number of coins in the team’s
possession, as shown in table I for the situation where there

Captured
Coins

Defensive Reward
Weight

Offensive Reward
Weight

3 100% 50%
2 75% 50%
1 50% 75%
0 50% 100%

TABLE I
Rules for Dynamic Fitness. WHEN THE TEAM HAS FEW COINS,

ATTACKING IS REWARDED MORE, WHEREAS WHEN IT HAS MANY COINS,
DEFENDING IS REWARDED MORE, THUS REWARDING BEHAVIOR THAT

WOULD MOST HELP THEIR SCORE.

are three coins on the field. The behavior that would improve
the team’s situation more is rewarded more: If most coins do
not belong to the team, capturing is more heavily rewarded,
while when the team already has the most coins, defending is
more heavily rewarded.

In the third method, Alternating Rules, every three gener-
ations the rules for capturing a coin are alternated such that
for one team more than 66% of the agents surrounding an
enemy coin must be attackers in order for the coin to be
captured, but for the other team, only 34% suffices. This
difference is enough to change the dynamics of the most
common challenge, i.e. when there is only one defending
agent: either one or three enemy agents are necessary for the
coin to be captured. Therefore this shaping strategy alternately
encourages individual behavior and team behavior, resulting in
more successful teams overall.

Each of these three shaping strategies were evaluated exper-
imentally alone and in combination to determine how effective
they each were at improving evolved agent behavior.

V. EXPERIMENTAL SETUP

Six different shaping methods were tested:
1) Alternating Fitness: As described above.
2) Dynamic Fitness: As described above.
3) Alternating Rules: As described above.
4) Alternating Fitness + Alternating Rules: Applying both

methods at the same time.
5) Dynamic Fitness + Alternating Rules: Applying both

methods at the same time.
6) Control: No shaping at all; the fitness weights and

capture requirements were set to 50% for both popula-
tions and left the same for the entire simulation. Three
different mutation rates were used to test the effect
of increased diversity: baseline (same as in the other
methods), 3×, and 6× higher rate.

Each algorithm was tested by running it for 100 generations,
which turned out in preliminary experiments to provide enough
time for shaping to interact with evolution. During each
generation, each of the 40 members of the population was
evaluated in a game 150 time steps long. A copy of the
current population was saved in every ten generations. After
each such run, a round robin tournament (called individual run
tournament) was run where every saved population was tested
against every other twice (once for each end of the field), and



Fig. 3. Master Tournament Results. The percentage of games won by each
method (i.e. the winners of 10 individual run tournaments of each method)
averaged over five master tournaments. The actual numbers are shown in
figure II. Alternating Rules, and especially when combined with Dynamic
Fitness, results in significantly better performance than the other methods,
although any form of shaping is better than none at all. The results thus
demonstrate that shaping can be used to make coevolution more powerful.

once against itself. Each game in the tournament was run for
1200 time steps (eight times longer than during evolution), in
order to get a more accurate evaluation. Victory in each game
was determined by the average number of coins held by the
team over all time steps.

The team that won the most of these games (or a team
from the earliest generation in case of a tie) went on to a
master tournament, where the winners of 10 runs of each
algorithm were tested against each other. This tournament was
run five times and the results averaged. Although the results
of these five tournaments were very similar, there were slight
differences due to the stochastic nature of the environment (i.e.
initial coin placement).

VI. RESULTS

While the results of the master tournament demonstrate
that the shaping methods are effective, the individual run
tournaments lead to insights into how they do it.

A. Master Tournament Results

Figure 3 and table II show the results from the master
tournament runs. From these results it is clear that any form
of shaping at all is a significant improvement over the control.
Further, Alternating Rules shaping is most effective, followed
by Dynamic Fitness shaping, and combining the two results
in a slight improvement on average. Alternating Fitness on
its own is better than when combined with Alternating Rules,
however. The reasons for these results will be discussed below,
however the most important conclusion is that they strongly
support the idea of shaping as a way to make coevolution more
powerful.

B. Individual Run Tournament Results

The master tournament shows that while shaping is better
than not, different techniques have different power, and are
not always compatible, which also suggests that they may be
differentially effective in different tasks. It would therefore be

Fig. 4. Individual Run Tournament Results. Percentage of wins of each
saved population in the 100-generation run is shown for each method. The
curves generally trend up, suggesting that progress is made over evolution.
However, there’s significant difference in the win percentage of the first saved
population (listed in detail in table III), suggesting that it can be used as an
early check of whether the particular coevolutionary arms-race works well in
the particular task.

desirable to have a simple way to evaluate which techniques
are working well in a given task, instead of having to run a
large master tournament.

Indeed, figure 4 suggests that such a test is possible. In this
figure, the win percentage is shown as a function of time for
the different shaping methods. Regardless of the method the
curves trend upward, i.e. generally the later the population
was saved, the higher the number of wins it will have in
the tournament. However, there is considerable difference in
how poorly the first saved population does in this tournament,
and it correlates well with how well the method performs
eventually (table III). Indeed, strong performance of an early
population means that coevolution is unable to maintain an
arms-race. Therefore, an individual run tournament can be
used to estimate how well each method is likely to do in
shaping coevolution. One exception is the Alternating Fitness
method which performs much more poorly than expected; the
reasons for this anomaly will be discussed in the next section.

VII. DISCUSSION

The main result is that shaping works well in establishing an
arms-race in coevolution. Moreover, automated shaping along
the fitness and environment is a more practical approach to
the problem then one might first expect. As a matter of fact,
in informal experiments it proved to be much more effective
than shaping by a human designer.

Several interesting questions arise from the results as well:
Why exactly is shaping so effective? Why is Alternating Rules
the most effective (and why does combining it with dynamic
fitness only improve it slightly)? Why did the Alternating
Fitness method produce such effective behavior against its
earliest saved population but still perform poorly overall? Why
is adding Alternating Fitness to Alternating Rules detrimental?
From the answers to these questions, general guidelines for
shaping can be inferred.



Generation Control 3× Mutation 6× Mutation Alternating
Fitness

Dynamic
Fitness

Alternating
Rules

Alternating Fitness +
Alternating Rules

Dynamic Fitness +
Alternating Rules

0 37.30% 34.78% 42.39% 44.34% 53.08% 73.52% 42.45% 74.65%
1 39.37% 35.09% 41.32% 42.64% 53.40% 74.15% 41.57% 74.91%
2 36.92% 36.48% 41.51% 42.58% 53.46% 74.03% 41.76% 75.79%
3 38.81% 34.53% 41.07% 43.21% 52.96% 73.96% 42.08% 75.91%
4 37.67% 35.53% 41.38% 42.70% 52.83% 74.21% 42.70% 75.47%
AVERAGE 38.01% 35.28% 41.53% 43.09% 53.14% 73.97% 42.11% 75.35%

TABLE II
MASTER TOURNAMENT DETAILS. THE WIN PERCENTAGES ARE LISTED FOR EACH METHOD IN EACH OF THE FIVE MASTER TOURNAMENTS, RUN WITH

DIFFERENT RANDOM NUMBER SEEDS. THE AVERAGES ARE SHOWN GRAPHICALLY IN FIGURE 3.

Generation Control 3× Mutation 6× Mutation Alternating
Fitness

Dynamic
Fitness

Alternating
Rules

Alternating Fitness +
Alternating Rules

Dynamic Fitness +
Alternating Rules

10 3.6% 4.5% 3.1% 1.6% 2% 1.7% 3.2% 2.4%

TABLE III
PERFORMANCE OF THE FIRST SAVED POPULATION IN THE INDIVIDUAL RUN TOURNAMENT. THE PERCENTAGE OF WINS OF THE FIRST POPULATION,

SAVED AT GENERATION 10, IS SHOWN FOR THE DIFFERENT METHODS (THE SAME DATA IS GRAPHED ON THE LEFT SIDE OF FIGURE 4). THE FEWER WINS
THERE ARE, THE MORE PROGRESS IS MADE IN LATER GENERATIONS, SUGGESTING THAT THE METHOD WORKS WELL IN THIS DOMAIN.

A. Effectiveness of shaping

Why is shaping better than not shaping? Analysis of indi-
vidual games gives some insight into this question. First, the
more successful teams had a sparse, relatively even coverage
of the enemy trove as well as their own at all times. Indeed,
due to the game mechanics, ideally the team should be evenly
spread out in the opponents trove, with a percentage of the
team staying behind to defend the captured coins. This strategy
works well for both the agents individually and for the team
as a whole.

In contrast, the control team was relatively dense in these
areas. This behavior suggests that these teams consisted of
rather similar agents, i.e. that diversity had been lost during
evolution, which in turn makes progress in evolution difficult.
Diversity can be brought back by almost any change in the
fitness function or the environment, which is exactly what the
shaping methods do. More different strategies are employed,
which in turn makes more efficient exploration possible, and
results in discovery of better strategies in the long run.

Interestingly, increasing diversity blindly, through the higher
mutation rates, does not result in a similar effect. There’s
more variation in the population, but apparently very little of
it is of any use. Instead, shaping diversifies through behaviors
that have been found effective under slightly different circum-
stances, and therefore form a better foundation for evolution
than random diversity.

B. Effectiveness of Alternating Rules

Given the above observation, it is possible to conjecture why
Alternating Rules were so effective: Changing the environment
results in strongly increased diversity. Indeed while changes
in fitness may encourage behavioral shifts in one way or
another, environmental changes do something far more drastic
and immediate – they fundamentally change what types of
strategies will be successful. Evolution must branch out farther
and discover fundamentally different strategies, such as those

where one agent captures a guarded coin and those where three
agents collaborate to do it.

Changes in the fitness function to reward the diversity may
still slightly enhance the evolution, since such pressures are
orthogonal to environmental pressures. However, alone they
are not as effective: offensive and defensive behavior are
still composed of similar components (of teaming up and ap-
proaching coins), whereas individual vs. team attacks require a
fundamentally different approach (relying on different sensors
and different timing). Environmental shaping is therefore more
effective in promoting diversity, and thereby more powerful
evolution in general, at least capture-the-coins and similar
tasks.

C. Illusion of progress with Alternating Fitness

Why are the late populations of Alternating Fitness so much
more powerful than the early populations, yet the algorithm
as a whole does not perform as well as others? A possible
explanation, based on observing individual games, is that they
have learned relatively good defensive behaviors, but have not
learned to attack. Therefore, they will easily lose to later teams
which have even rudimentary success in both.

Indeed, good defense is easier to establish than offense. It
requires simply staying around close to the coins in the teams
trove, whereas offense requires more mobility, i.e. traveling to
the other side of the field, selecting a lightly defended coin,
and traveling from coin to coin as they are captured. Even
though fitness alternates between favoring offense and defense,
defense will be learned earlier. Early generations therefore tend
to know only how to defend, whereas later generations also
have some offensive ability. Even though such ability is not
strong enough to do well in the master tournament, it is enough
to beat the early generations. Other shaping methods reward
both behaviors more equally, making the performance of early
generations a good indicator of their overall power.



D. Incompatibility of Alternating Fitness and Alternating
Rules

Even though the progress in Alternating Fitness is not as
strong as it first seems, it is better than not shaping at all. Then
why is it detrimental to add Alternating Fitness to Alternating
Rules? A possible answer is that because both rely on time for
pacing, there are some detrimental interactions. In particular,
there are times when a particular task is both very well
rewarded and very easy to do (such as individual defense),
and evolution quickly converges the population to a simple
solution from which it is difficult to continue.

Dynamic Fitness avoids this problem by emphasizing be-
haviors that actually matter. It would not spend time on
individual defense unless there are many coins to defend, in
which case that behavior actually makes sense—but only until
the situation changes again. It is therefore less likely to lose
diversity, and instead in combination with Alternating Rules
discovers well-performing solutions slightly more efficiently
than either method alone.

E. General shaping guidelines

The above observations suggest several general guidelines
for shaping coevolution:

1) Automated shaping of coevolution is highly effective,
often more so than human-shaped coevolution.

2) Shaping is effective through encouraging diversity.
3) Changing the environment is more effective in encour-

aging diversity than shaping fitness (at least in domains
like capture-the-coins).

4) When combining shaping methods, they should be based
on different principles to avoid detrimental interactions.
For instance, if something changes based on time, some-
thing else should change based on a specific behavior.

VIII. FUTURE WORK

A different environment could provide other dimensions
for shaping than the two used in this paper. Given that
environmental shaping (in terms of Alternating Rules) turned
out so effective in capture-the-coins, it would be interesting
to evaluate whether other aspects of the environment could be
similarly shaped to maximum effect. For example, a combat-
oriented environment could include shapable characteristics in
the agents’ actions; others might include shapable objects such
as walls, roads, and tools. Further, the agents could modify
the environment themselves with increasing impact, including
the way in which the rules of the environment work during
training.

Although automated shaping is more efficient in the current
domain, human-driven shaping may be more powerful in
other ways. For instance, human creativity could allow new
and interesting behaviors to emerge from coevolution that
otherwise would not. The challenge will be to anticipate such
creativity by providing sufficient means to the human designer
to change the problem.

The limits of shaping could be explored by allowing the
shaping parameters to more drastically change the environ-
ment: Is there some point where such changes become coun-
terproductive, and likewise, is there a point where shaping
is most effective? The populations produced over long-term
shaped coevolution could be analyzed, identifying the traits
that successfully shaped and coevolved populations have in
common, perhaps making it possible to determine which
design problems are most amenable to the technique.

IX. CONCLUSION

Prior research in both shaping and coevolution has demon-
strated the power of each technique individually. While they
are both addressing the same problem in evolution, i.e. con-
tinual progress from easier to more challenging tasks, they are
in principle compatible and can be combined to an improved
effect. Several methods of automatic shaping of coevolution
were introduced and compared in this paper. Each of them
is better than not shaping, and successes and failures of each
shaping method lead to a general understanding of what works
and why. In particular, shaping works through increasing
diversity in an informed way, and shaping the environment is
more effective in this process than shaping the fitness, at least
in the capture-the-coins task. In the future, this understanding
can be used to design an automated shaping method for a
given domain, thus allowing us to create more intelligent game
agents than was possible before.
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