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Abstract 

 

Evolving Scout Agents for Military Simulations 

 

Brian David Boyles, M.S. Comp. Sci. 

The University of Texas at Austin, 2015 

 

Supervisor: Risto Miikkulainen 

 

Simulations play an increasingly significant role in training and preparing the 

military, particularly in environments with constrained budgets.  Unfortunately, in most 

cases a small number of people must control a large number of simulated vehicles and 

soldiers.  This often leads to micromanagement of computer-controlled forces in order to 

get them to exhibit the human-like characteristics of an enemy force.  This thesis uses 

Neuroevolution of Augmenting Topologies (NEAT) to train neural networks to perform 

the role of scouts which analyze the terrain and decide where to place themselves to best 

observe the enemy forces.  The main attribute that the scout agents consider is a vapor 

flow rate from the enemy starting location to their intended objective, which according to 

previous studies indicates likely chokepoints along the enemy route.  This thesis 

experiments with different configurations of sensors and fitness functions in order to 

maximize how much of the enemy team is spotted over the course of the scenario.  The 

results show that these agents perform better than randomly placed scouts and better than 

scouts deployed using heuristics in many situations, although not consistently so.  
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Evolutionary optimization of scout agents using vapor flow is thus a promising approach 

for developing autonomous scout agents in military simulations. 
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Chapter 1: Introduction 

Over the past three decades, computer simulations in the United States Army have 

become an increasingly important part of maintaining a unit’s training and readiness 

[12][22].  Improvements in modeling and simulation technology allow geographically 

dispersed military units to train and fight together on a digital battlefield at a fraction of 

the cost it would take to perform the same training in person [13].  The Army’s Project 

Manager for Combined Arms Tactical Trainers now encompasses simulators for 

individual soldiers, helicopters, wheeled and tracked vehicles, and artillery [16].  Not 

only are a wide range of platforms modeled in simulation, but the training focus ranges 

from individual performance in marksmanship and combat medical care to combined 

exercises incorporating land and air forces in a battlefield environment.  With past budget 

cuts and a similar cost-constrained environment for the foreseeable future, the importance 

of computer simulations in the military will continue to increase in the years ahead. 

This thesis focuses on simulations that support collective training, which is 

defined as training that “requires interactions among individuals or organizations to 

perform tasks that contribute to the unit’s training objectives.”[9]  Exercises in these 

simulations are always overseen by a number of observer-controller-trainers (OCTs) 

whose role is to orchestrate the exercise in order to achieve the training objectives set 

forth by the commander.  They can do this through techniques ranging from injecting 

events into the exercise (e.g. simulating a radio transmission from higher headquarters 

changing the unit’s mission in order to test the unit’s flexibility and ability to react to a 

changing situation) to directly controlling enemy forces in an attack against the friendly 

lines. 
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A single OCT normally controls a large number of simulated forces, both friendly 

and enemy.  This practice is particularly common in training conducted by small units 

(less than 120 soldiers) due to the limited manpower and resources those units have 

available and the high frequency of small unit training events.  While this practice 

provides excellent economy in terms of manpower and personnel costs, this can also lead 

to a lower-quality training experience.  For example, if there are computer-controlled, 

OCT-overseen friendly forces in a scenario (to simulate friendly units on the flank of the 

unit doing the training), the OCT must control their movement, weapons, and make 

communications with the live unit being trained as if he were the simulated unit’s 

commander.  However, if the OCT is controlling several friendly and enemy forces 

simultaneously he may become fixated on one section of the scenario while letting the 

other units operate on their own.  Focusing too much on one simulated unit or action 

unfolding in one area of the map can cause the OCT to lose sight of his role in overseeing 

the exercise as a whole and maximizing the training benefit to the unit. 

Given the budgetary and manpower constraints that the U.S. Army operates 

under, adding additional OCTs is not a realistic solution to overcoming the challenges 

posed by OCTs controlling large numbers of simulated forces.  Instead, the way ahead is 

to improve the artificial intelligence of the simulated units so that less micromanagement 

is needed and the OCTs can focus on their primary job of ensuring the exercise as a 

whole provides the greatest training benefit to the unit, i.e. overseeing how the exercise 

as a whole is unfolding and making the big picture decisions to maximize the training 

value of the exercise.   

In this thesis, I propose a method for evolving scout agents in a simulated 

environment using Neuroevolution of Augmenting Topologies (NEAT) [19].  These 

scout agents will analyze the terrain and determine where to place themselves with the 



 3 

goal of the friendly team observing enemy forces for as long as possible as they advance 

across the battlefield.  Specifically, the focus of this thesis is to evaluate different sensor 

configurations and fitness functions for these scout agents and to examine the utility of 

the gas diffusion method [1] to predict the movement of large military formations. 
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Chapter 2: Background and Related Work 

There are three areas of background information and related work that this thesis 

is built upon.  The first is a general military understanding of reconnaissance operations 

and the role that scouts play in them.  This provides the proper context for the 

environment that the scout agents will operate in and the support the method of 

evaluating their performance.  The second area is on military terrain analysis and past 

instances of computer-aided terrain analysis.  The final area is a discussion of NEAT and 

past implementations of this technique.      

 

2.1 RECONNAISSANCE OPERATIONS 

Reconnaissance is an essential component to every military engagement.  If your 

forces know where the enemy is and the enemy does not know where you are, that allows 

your forces to choose when and where, or even if, to engage the enemy.  In contrast, a 

friendly force with overwhelming military force is unable to win if they cannot find the 

enemy.  The United States military refers to this as “intelligence, surveillance and 

reconnaissance” (ISR), which they define as “an enabling operation that integrates and 

synchronizes all battlefield operating systems to collect and produce relevant information 

to facilitate the commander’s decisionmaking.”[4]  For ground forces, the primary means 

of ISR is through scout platoons and cavalry squadrons (which conduct manned 

reconnaissance from vehicles or dismounted soldiers) though this can also include 

unmanned aerial surveillance conducted by drones, motion detecting sensors emplaced 

by ground forces, or information gathered by human-operated helicopters and fixed-wing 

aircraft. 
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For defensive operations, reconnaissance falls under the scope of security 

operations, which are “operations undertaken by a commander to provide early and 

accurate warning of enemy operations, to provide the force being protected with time and 

maneuver space within which to react to the enemy, and to develop the situation to allow 

the commander to effectively use the protected force.”[6] The scope of this mission can 

range from a screening operation, which provides early warning but lacks the combat 

power to fight any sizeable enemy force, to a covering operation which is fully capable of 

fighting enemy forces and preventing them from getting close to the main body.   

This thesis focuses on modeling a screening operation against an enemy armored 

force.  Therefore, the scout agents in the simulator will not be able to destroy the enemy – 

their sole focus is to detect the enemy and collectively observe the enemy forces as they 

pass through the reconnaissance zone so that a notional friendly commander can prepare 

and organize his forces to fight the enemy.  In a screening operation, friendly scouts are 

typically divided into sections of two vehicles that each go out to establish observation 

posts (OPs).  Depending on the mission requirements, the scout leader can position his 

OPs in breadth or depth, or designate alternative or fallback positions in order to maintain 

observation on the enemy throughout the reconnaissance zone. 

On the battlefield, scout units are located forward of the main combat units in a 

zone that can be several kilometers deep.  Within this zone, the scouts are given a large 

degree of freedom in choosing where to establish their OPs.  One of the main 

characteristics of a good OP is that it should offer unobstructed observation of the 

assigned area or sector, ideally with overlapping coverage from neighboring OPs.  

However, the second characteristic is just as important: The position should offer 

effective cover and concealment from the enemy in order to reduce their vulnerability, to 

include routes to and from the OP [5]. 
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Figure 2.1 shows an example deployment sketch of a screen line on the battlefield 

with enemy forces moving from north to south.  The hills and trees divide the area into 

three corridors, labeled as “Avenues of Approach” (AAs).  The scout platoon leader 

responsible for this sector has three OPs, which are all placed forward to spot the enemy 

and determine which AA he will use.  The enemy, represented by the diamond, is using 

AA 2.   In response, the scout platoon leader keeps OP 2 in place to observe the enemy 

and moves his other forces to OP 4 and OP 5, using the terrain to keep the enemy from 

observing these forces. 

 

Figure 2.1: Example deployment sketch of three OPs in the reconnaissance zone. 
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2.2 MILITARY TERRAIN ANALYSIS  

Finding and selecting sites for OP emplacement begins in the planning phase, 

specifically with a terrain analysis of the battlefield.  This phase is conducted by a 

military leader as a part of Intelligence Preparation of the Battlefield (IPB).  IPB is a 

multi-step process which first defines the boundaries of the area of operations, then 

describes the effects of the terrain, weather, and civil considerations, and finally applies 

any intelligence available on enemy forces to that terrain to determine where they will be 

and what they will try to do [5]. 

The United States Army uses five factors to analyze terrain: Avenues of approach, 

cover and concealment, observation and fields of fire, obstacles, and key terrain.  This 

thesis will focus on the first three.  The starting point is determining the enemy avenues 

of approach through the terrain.  An avenue of approach is “an area that provides 

sufficient ease of movement and enough width (for dispersion) to allow passage of a 

force large enough to significantly affect the outcome of the battle.”[8]  The scouts need 

to find positions which offer sufficient observation of the avenues of approach, while also 

finding a position that offers cover and concealment to hide them from the enemy. 

Horn and Baxter [10] used the same three factors to produce a terrain analysis tool 

that located potential tank battle positions to support an attack.  They primarily used line-

of-sight analysis on digital terrain elevation data to determine locations that could see the 

enemy forces.  Based on this analysis, they created a cost map biased towards routes the 

enemy could not observe and used Dijkstra’s algorithm [2] to find the best route.  The 

user could also add additional constraints, such as a minimum or maximum distance from 

the objective, or the angle of fire between the assault and support positions to avoid 

fratricide.  Their final product is a terrain analysis tool to assist military leaders in 

conducting the planning process. 
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In an earlier work, Richbourg and Olson [17] used a similar approach with line-

of-sight calculations and other metrics, but applied to a defensive scenario.  In this case, 

special care is given to identifying concealed routes that the enemy might use to approach 

the defenses and then trying to find defensive positions that minimize enemy 

concealment.  They use the slope of the terrain as an indicator of whether or not a 

proposed position is suitable for the occupying unit and attempt to identify larger unit 

positions by groupings of smaller ones.  Like Horn and Baxter, their approach was 

intended to be used as a planning tool for military leaders to narrow the number of 

possible defensive positions they would have to consider. 

More recently, Mora et al. [15] use a multi-objective ant colony optimization 

algorithm called CHAC to plan routes for military logistical convoys on a hexagonal map 

from the computer game “Panzer General.”  This work builds off their earlier research 

[14] that first introduced this approach to military route planning.  There are two cost 

maps, one for each objective: The first represents the need to deliver their supplies to the 

destination quickly and is a standard movement cost map of the area.  The second goal is 

to maximize safety.  Enemy units are placed on the map and the locations they can 

observe are given an associated health cost to reflect the danger of moving through those 

hexes.  In an iteration, the ant agents try to find a complete path from source to 

destination based on heuristics (the weighted value of speed and safety) and pheromones 

left by previous ants. 

Burgess [1] had a similar motivation to this thesis in that he sought to “reduce the 

required size of training enablers by exporting some of their current duties to an 

artificially intelligent system which is able to see digital terrain, recognize militarily 

likely avenues of approach, and template defensive positions on the terrain…”  His 

approach was different from other works on this topic and is based on Duckham [3], who 
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proposed that humans tend to choose simplest paths over mathematically optimum paths.  

As a result, Burgess discovered that a gas diffusion model is very useful for determining 

avenues of approach for mechanized ground forces.  He used approximately 600km
2
 of 

digital terrain elevation data (DTED) covering part of the U.S. military’s National 

Training Center in a scenario in which friendly forces are defending against an enemy 

attack.  The enemy starting positions or anticipated locations are modeled as vapor 

sources while their objectives are modeled as vapor sinks.  The rate at which vapor can 

transfer between each map cell is determined by the slope of the terrain, which he 

classified into three categories according to Army doctrine.  The map cells are 

represented as squares 30m across, which exchange up to 25% of the vapor difference 

with its neighbor.   

He noted that upon reaching an equilibrium state, the gradient-vector magnitude is 

highest at the source, sink, and at chokepoints where the terrain forces enemy units to go 

through a specific area.  Burgess then proposed different methods of using those 

chokepoints to identify areas of key terrain and possible anchor points to deploy 

defensive units.  These agents would choose defensive locations by scoring prospective 

locations on their ability to cover the chokepoints by direct fire, proximity of friendly 

units, and dispersion to reduce vulnerability to artillery fires. 

 

2.3 NEUROEVOLUTION AND NEAT 

This thesis has similar foundations as Burgess’ paper [1] in that it has a similar 

motivation and employs the same gas diffusion model to visualize the terrain.  The most 

significant difference is that the scout agents in this thesis are evolved using 

neuroevolution.  Neuroevolution is the artificial evolution of neural networks using an 
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evolutionary algorithm over a number of generations.  In traditional neuroevolution, the 

topology of the network is fixed and usually consists of the sensor inputs being fully 

connected to a single hidden layer, which are fully connected to the outputs.  While such 

a network can, in principle, evolve to approximate any continuous function, the search 

space can be very large and thus require a very long time to train. 

A variation of this approach is Neuroevolution of Augmenting Topologies 

(NEAT) [19].  NEAT begins as a simple, minimalist network whose topology can be 

augmented by adding or removing links and nodes, therefore keeping the search space 

small and evolving a network topology that is complex enough to accomplish the desired 

task but simple enough to learn and develop quickly.  NEAT outperforms other 

neuroevolution methods in traditional benchmarking tests such as double pole balancing 

[18] and therefore is well suited for the high-dimensional state spaces considered in this 

thesis.    

In NEAT, the links between the network nodes are considered to be connection 

genes, and the nodes of the network are represented by node genes.  These genes are 

uniquely labeled with an innovation number so that corresponding genes in crossovers 

can be easily found without requiring a detailed analysis of the network topology.  

During mutation, network weights can change as in other forms of Neuroevolution, but 

additional mutations include adding a new connection gene, enabling or disabling genes, 

or adding a new node.  When a new node gene is added, it splits an existing connection 

gene with the incoming weight to the new node set at 1.0 and the outgoing weight set to 

the original connection weight.  This procedure allows new future innovations from the 

modified topology but does not immediately affect the functionality of the network.  

NEAT groups organisms into species according to their network similarities, and agents 
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compete primarily within their own species which helps maintain diversity in the 

population. 

Some previous applications of NEAT include evolving a roving eye for Go [20] 

which has a limited field of view of the game board with some sensors providing specific 

information on the map spaces that the roving eye can see, while others give only a 

general sense of how many pieces exist outside of its field of view.  The network outputs 

determine where to move the eye and when to place a piece.  A similar approach could be 

used in a scouting scenario in which the scouts have a limited field of view and some 

sense of where other units are (simulating radio communications) and use that to 

determine whether to stay in place or find a better observation point. 

Another implementation is in the OpenNERO video game [21] in which the user 

trains neural networks using NEAT in a real-time setting by controlling the fitness 

rewards and punishments for various behaviors and then competes against other 

populations in simulated battle.  OpenNERO performs NEAT in real-time by evolving 

and replacing agents in only a portion of the population at a time instead of evolving the 

entire population at once.  This gradual evolution of the population makes the transition 

from generation to generation less noticeable to a human player while still evolving and 

improving performance in a relatively short amount of time. 

 

2.4 CONCLUSION 

This thesis develops the field of autonomous agents in military simulations by 

combining Burgess’ gas diffusion method to analyze terrain [1] with agents evolved 

using NEAT [19].  Since this approach has not been tried before, a simulator and 
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environment was developed to train and evaluate scout agents against non-evolutionary 

baselines. 
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Chapter 3: The Bare Bones Military Simulator 

In order to train and evaluate scout agents, I developed the Bare Bones Military 

Simulator (BBMS) which incorporates various terrain types, performs line-of-sight 

calculations, models the gas diffusion method proposed by Burgess in [1] for modeling 

military movements across terrain, and uses NEAT [19] for training the agents.  The 

purpose of this simulator is to evaluate the utility of evolving neural networks for scout 

employment as a proof-of-concept.  Therefore it is optimized for running large numbers 

of experiments at the cost of a simpler representation of the operating environment. 

 

3.1 BASIC FUNCTIONALITY 

The building blocks for training and testing scout agents are scenario files that the 

user can create and modify.  Each scenario has a hexagonal tile map of arbitrary size 

consisting of up to three terrain types.  Visibility between two hexes that are n hexes 

apart is calculated by drawing a line between them and then checking if any hex along 

that line blocks the line-of-sight.  Table 3.1 shows the impact of terrain type on line-of-

sight as well as the movement cost of terrain, which is used to calculate gas diffusion 

rates.  Each scenario also has a maximum viewing distance that reflects the weather and 

lighting conditions of the scenario.  

Each hex can contain up to one unit that can be either friendly or enemy.  Friendly 

units, referred to as scout agents, can represent a manned scout section (on foot or 

operating a vehicle) or a remote sensor that has been emplaced by some other means.  

Enemy units represent tanks advancing along a route to their objective.  Unit movement 

paths consist of a series of waypoints the unit will move towards at the rate of one hex 

per clock tick (0.1 seconds in game time).  The simulator supports sub-hex movement to 
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reflect the actual speed of the vehicles in question, but the simpler movement rate was 

chosen for these experiments in order to improve the running time.  Using realistic 

movement rates would not change the results.  It would only matter if units are moving 

through trees since it is the only terrain type with a different movement cost from clear 

terrain.  In the actual scenarios, enemy units almost always avoid trees because the enemy 

units represent mechanized forces that are more vulnerable to enemy forces and travel 

slower through forested terrain.  

 

Type Icon Line-of-Sight Movement Cost 

Clear 

  

No impact 
1 

High Grass 

 

Blocks LOS if more than 

three hexes deep 1 

Trees 

 

Blocks LOS to all hexes 

behind it 9 

Table 3.1: Simulated terrain types and characteristics. 

Each hex can only hold one unit at a time.  Therefore, if an enemy unit tries to 

move into the same square as a friendly unit, the scout agent is removed from the 

scenario.  This action represents the enemy detecting and destroying the scout, with the 

assumption that the enemy is unable to detect the scout agent from further distances 

(through appropriate camouflage and concealment, and in the case of remote sensors, 

their small size).  If the hex is occupied by a unit on the same side, then the moving unit 

will stay in place and attempt to move during the following tick.    
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The time flow of the scenario is controlled by a clock that can move at a variable 

rate.  The clock can be adjusted between 1/8
th

 normal speed and x96 speed so the user 

can run experiments quickly.  The fitness functions for evaluating agent performance and 

overall team fitness are unaffected by the clock speed since it only changes the number of 

ticks that are processed per second. 

 

3.2 GAS DIFFUSION METHOD INTEGRATION 

BBMS uses the gas diffusion method developed by Burgess [1] to simulate troop 

movement.  Each hex on the map has an associated gas density attribute, referred to as 

vapor, which is an integer between 0 and 25500.  Since the vapor flow represents the 

movement of enemy forces from their starting positions to their intended objective, vapor 

sources on the map represent the enemy assembly area or their anticipated axis of 

advance.  Likewise the vapor sinks represent the objective towards which the enemy units 

are moving.  Sinks empty all vapor in the hex, while sources always replenished vapor in 

the hex to 25500, with updates occurring every clock tick. 

The amount of vapor to transfer to the surrounding six hexes is calculated based 

on the relative vapor levels in the two hexes and the movement cost of the terrain.  The 

transfer rate is 1/6
th

 of the difference in density between the two hexes.  This rate was 

chosen to maximize the amount of vapor that can be transferred while preventing a 

scenario in which the total vapor transferred out exceeds the supply within the hex (such 

as a case where a single hex with full vapor density is surrounded by empty hexes).  

Every clock tick, the transfer amount is calculated for all hexes first, then the vapor is 

transferred and finally the sources and sinks are updated. 
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Vapor sources and sinks are placed by the user during the scenario design phase, 

who then runs the clock until the vapor map reaches an equilibrium state.  In an 

equilibrium state, there is a steady progression of vapor density between the source and 

sink regardless of terrain, but the important measure is the vapor flow rate from hex to 

hex.  This rate is calculated by summing all vapor flowing into a hex and subtracting all 

vapor flowing out.  Flow vectors can be easily calculated from these rates to determine 

the direction of flow, but in the experiments only the overall flow rate is used.  As with 

Burgess’ experiments, the highest flow rates are found at chokepoints in the terrain and 

around the source and sink.  Figure 3.1 compares the vapor density map (a) and vapor 

flow rate (b) in a sample scenario.  The vapor sources are represented by yellow squares, 

the sinks by red squares, and trees by green dots.  In the vapor density map, the color of 

each hex is a color gradient that scales from black at zero density to blue at full density.  

Note how the vapor density changes gradually from source to sink regardless of the 

terrain type.  The vapor flow rate, with the maximum color gradient normalized by the 

highest flow rate on the map, shows areas of high concentration at the chokepoints 

between the source and sink. 
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(a) 

 

(b) 

Figure 3.1: Vapor density map (a) and vapor flow rate map (b) once an equilibrium has 

been reached between source and sink in a sample scenario.  Vapor density 

is not useful for visualizing the terrain, but vapor flow rate is high at source, 

sink, and chokepoints between them. 

One limitation mentioned by Burgess [1] is that it takes a long time to reach an 

equilibrium state.  The map Burgess used consisted of 259,200 cells and took hours to 

reach an equilibrium state.  Although the scenario maps in this thesis are smaller by 

several orders of magnitude and reach an equilibrium state in less time, two new methods 

that make this process considerably faster have been implemented in this thesis. 

The first technique uses a simple distance heuristic to initialize the vapor density 

level of each hex.  Burgess’ approach [1] initializes all points on the vapor density map to 

full density and then lets the vapor sinks and sources reach an equilibrium state.  In 

contrast, the heuristic used in this thesis takes advantage of the fact that, at equilibrium, 

there is a steady gradient of vapor density between source and sink regardless of terrain.  

Therefore, this heuristic initializes the vapor density as a function of distance between the 

nearest source and sink on the map.  The advantage of this approach is that all hexes can 

simultaneously begin moving towards their equilibrium state and they already start close 

to their final vapor density value.  An experiment run on one of the scenarios shows that 
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this heuristic alone causes a map to reach equilibrium state two and a half times faster 

than normal (see Table 3.2 for the exact result). 

The second technique is to apply a flow rate multiplier so that the vapor transfers 

between hexes faster.  This approach violates the earlier limits on flow rates (therefore 

making it possible to transfer more vapor out of a hex than exists in it, which in turn can 

generate significant oscillations in vapor density), but this effect rarely occurs in practice.  

Therefore, a throttling process adjusts the flow rate multiplier that increases the flow rate 

by 0.05 every hundred stable ticks up to a maximum of 3.0.  Since the hexes that should 

have the greatest flow rate are the sources and sinks, higher flow rates in ordinary hexes 

indicate that there may be an oscillation caused by accelerated flow rate.  Therefore, if 

this situation arises, the throttle reduces the flow rate by 0.05 to a minimum of 1.0.  

Finally, in the event that any hex has negative vapor density, the flow rate is immediately 

reduced to 1.0. 

The throttling method still leads to occasional oscillations in the flow rates on the 

map, but as it adjusts the flow rate the oscillations dissipate.  Furthermore, in spite of the 

oscillations, throttling reaches an equilibrium state nearly four times faster than normal.  

Using both methods together increases performance to over eight times that achieved by 

Burgess in [1]. 
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Technique Ticks to Equilibrium Rate Comparison 

No prediction or throttling 39647 1.0 

Prediction but no throttling 14976 2.65 

Throttling but no prediction 10076 3.93 

Throttling and prediction 4855 8.17 

Table 3.2:  Impact of flow rate techniques on the Scenario 41 map.  Combining 

throttling and prediction reaches equilibrium over eight times faster than the 

standard approach described by Burgess in [10]. 

On large-scale maps (such as the 30 x 20km map used by Burgess), even using 

the techniques described above, reaching the vapor equilibrium state will still take some 

time.  However, in the context of this simulator, the vapor flow rates at equilibrium are 

calculated during the scenario design phase and are not updated in real time.  This 

approach represents the planning conducted prior to the operation, specifically, the terrain 

analysis of possible enemy avenues of approach. 

 

3.3 NEAT INTEGRATION 

BBMS uses the Java version of NEAT (JNEAT), which was written by Ugo 

Vierucci in 2002 based off of the original NEAT libraries for C++ written by Kenneth 

Stanley [24].  The package provides support for a large variety of parameters in evolving 

populations, but only two were varied in this thesis: the overall mutation rate (to include 

adding nodes and links, enabling or disabling genes, and modifying link weights) and the 

species drop off age, which penalizes species that persist for too many generations. 

The JNEAT population files are saved separately from the scenarios which makes 

it easy to train a population on multiple maps and to run evaluations progressively.  
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BBMS also incorporates tools into the simulator to assign organisms from a population to 

the friendly agents on the map randomly or sequentially.  Furthermore, it can get the 

organism’s network output for a selected hex or from the unit’s current location. 

 

3.4 SCENARIO DESIGN 

To create a new scenario in BBMS, the user creates a blank map or a randomized 

map of a given size through the user interface.  The user then modifies the terrain as 

needed and adds vapor sources and sinks according to the enemy’s starting point and 

objectives.  Once complete, the vapor model is run until an equilibrium state is reached.   

The next step is to place enemy units and determine their routes.  This process is 

modeled through “Courses of Actions” (COAs), which represent a unique deployment of 

enemy units and their associated waypoints in the scenario.  Each COA reflects a possible 

plan of advance by the enemy commander.  As many COAs as desired can be added, of 

which one is randomly chosen during the scenario training iteration.  All COAs are 

currently weighted equally for random selection and testing evaluation.  In reality, some 

COAs are far more likely to be chosen than others and therefore the overall performance 

of a JNEAT population on a map (in all of its COAs) does not reflect its likely 

performance against human opponents. 

Third, the user must specify where the “friendly zone” and “enemy zone” begin.  

The friendly zone represents the area in which combat units behind the scouts and 

support troops reside.  Scout agents will never be deployed within this zone, and once all 

enemy units have reached the friendly zone, the scenario iteration ends.  Since enemy 

units may “wait” in the friendly zone until other units arrive (since enemy units cannot 

advance off the map edge), enemy units in the friendly zone do not count for or against 
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team performance or individual fitness.  The “enemy zone” represents the enemy’s 

deployment area and thus friendly scouts cannot be placed here.  All hexes between the 

friendly and enemy zone is considered to be the “recon zone” in which friendly scouts 

may deploy freely. 

No friendly units are added during the design process.  They are automatically 

added and placed during scenario training and testing based on user parameters.  Once 

the scenario is complete and saved, the next step is to train a population on it by running 

the scenario. 

 

3.5 SCENARIO EXECUTION 

When loading a scenario for training, the user can either load a pre-existing 

JNEAT population file or generate a custom population based on parameters for the 

number of starting sensors, hidden nodes, and starting link probabilities.  After specifying 

various parameters for the scenario, the user will either generate or load the population.  

Once the scenario is unpaused, it will run until all enemy units have reached the friendly 

zone, at which point another COA is chosen randomly and the scenario starts again. 

To account for the probabilistic nature of neural networks and the chosen COA, 

each organism’s fitness can be averaged over the course of several iterations, so that a 

single bad iteration will not remove an otherwise successful agent.  After all organisms 

have had the minimum number of iterations, the lower half of the population in terms of 

fitness are removed and replaced by mutations of the higher-performing survivors.  This 

new epoch is saved as a separate population file and the training continues again. 

The user also specifies the percent of the population that should participate in a 

given iteration.  Organisms are chosen sequentially to ensure all agents have at least the 
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minimum desired number of training iterations desired.  This approach significantly 

impacts the performance of the team: Having too many agents will saturate the map, 

guaranteeing a very high team performance rate regardless of individual performance. 

 

3.6 TEST POPULATION 

During training, the user specifies a directory for saving the population files and 

the statistics from the training iterations.  Each epoch is saved as a separate population 

file so that performance over time can be evaluated in the testing phase.  During testing, 

the user chooses which directory to read JNEAT populations from and specifies the 

number of scouts that will participate in each iteration.  The user also determines how 

many runs will be done on each test case (i.e. COA) and the epoch interval for evaluating 

a subset of the trained iterations (e.g. an epoch interval of five will evaluate every fifth 

epoch of the population). 

Once the target population is loaded, the simulator will automatically go through 

each COA on the maps specified in the program.  For each iteration, the requisite number 

of organisms are randomly drawn from the population.  Once sufficient number of tests 

have been run for a given COA, the next COA (or the next map) is selected and the 

process continues.  As with training, the summarized and detailed results are saved to text 

files for easy data analysis. 

The next chapter lays out the specific parameters and scenarios that are used to 

train and evaluate the scout agents in this thesis.  It also discusses a variety of organism 

types and fitness functions that will be compared to non-evolutionary baseline techniques 

for emplacing the scouts. 
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Chapter 4: Experimental Setup 

The goal of these experiments is to evolve scout agents who are collectively able 

to observe enemy units as they pass through the reconnaissance zone.  The main variables 

in the experimental setup are two evaluation metrics, three organism types, and four 

fitness functions which are trained and evaluated across four scenarios.  The goal is for 

the evolved scout agents to outperform two simple methods of emplacing scouts which 

do not use neural networks. 

 

4.1 EVALUATION METRICS 

The main method for evaluating team performance is based on how long various 

enemy units were seen during the course of a given iteration.  Every tick, the team gets a 

point for every enemy unit that it can see.  This score is normalized at the end of the test 

by the total number of possible spots (i.e. number of enemy units * time spent in the 

recon/enemy zone).  The maximum performance of a team is highly dependent on the 

map, number of friendly scouts available, and the enemy COA so direct comparisons of 

team performance should not be made with other scenarios or within scenarios of varying 

environment parameters (e.g. number of scouts and maximum visibility range). 

A secondary evaluation metric is the number of scout agents that were destroyed 

over the course of the scenario.  Scouts are only destroyed when an enemy unit occupies 

the same hex as a friendly scout.  The individual fitness level of the destroyed unit is 

inherently reduced because once destroyed it can no longer spot any units.  To further 

discourage scout agents from placing themselves in areas that might be overrun, the 

“death penalty factor” parameter is multiplied by the agent’s fitness if it is destroyed (e.g. 
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if an agent with fitness 0.8 is destroyed and the death penalty factor is 0.1, its final fitness 

is 0.08).   

This secondary metric is a gross oversimplification of reality, since the enemy 

might be able to spot the scout from longer range and with the exception of certain 

remote sensors, the scout agent would be able to move or seek better concealment as 

enemy units approach.  Modeling counter-detection and friendly agent destruction is an 

area for much improvement in future work.   

 

4.2 ORGANISM TYPES 

All organisms modeled in BBMS are neural networks evolved using JNEAT.  The 

sensors are the inputs to the network and they measure the equilibrium vapor flow rate on 

the scenario map.  The number and configuration hidden nodes vary from organism to 

organism, but all use the sigmoid activation function to calculate their output.  There is a 

single output for each organism which represents its evaluation of a prospective OP 

location.  If the network output is greater than or equal to 0.75 it will move to that 

location and remain in place for the rest of the scenario. 

 

4.2.1 Single-Sensor Model 

The simplest type of network consists of a single sensor that sums the total vapor 

flow rate in all of the hexes it can observe from a prospective hex.  This value is 

normalized by the maximum possible flow rate observable from any hex on the map.  

The rationale behind this approach is that the vapor flow rate indicates the likelihood of 

an enemy unit moving through a particular hex, so therefore the sum of vapor flow rates 
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visible from a hex should measure the overall likelihood of observing the enemy from 

that position. 

 

4.2.2 Dual-Sensor Models 

This thesis considers two types of dual-sensor models.  The inspiration for the 

first model arose due to the high death rate of scouts in one of the training scenarios.  In 

the scenario, a three-hex wide corridor penetrated an otherwise thick forest.  The greedy 

approach to getting spots would lead scout agents to position themselves in the middle of 

the corridor, which would inevitably lead to their destruction (see Section 4.5.1 for details 

on this scenario).  With only one sensor to detect flow rates, there was no way for the 

organism to learn what a “safe” spot with good observation is compared to a “dangerous” 

one with similar observation. 

Therefore, a second sensor was added to detect the flow rate of the prospective 

hex that the scout will occupy, normalized by the highest flow rate in any single hex on 

the map.  Since forest hexes, where the enemy is unlikely to travel, have a higher 

movement cost than other terrain types, the vapor flow rate through them is lower, giving 

a distinct signature that the network may use in its evolution process. 

During later experiments, the behavior of finding concealed terrain was 

implemented directly during scenario configuration which forced scouts to only consider 

concealed positions.  Therefore, the dual-sensor agent evaluated in Section 5.4 uses its 

second sensor detect the highest single-hex flow rate within the field of view, normalized 

by the highest single-hex flow rate on the map.  The rationale behind this approach is that 

high flow rates indicate chokepoints the enemy through which the enemy is likely to 

travel, and thus, it may be more helpful to observe a single chokepoint than to observe a 
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large area through which the enemy is unlikely to go, but summed together would yield a 

larger flow rate than a chokepoint.   

 

4.2.3 Directional Sensor Models 

This organism has seven sensors, with the first six summing flow rates in 60 

degree fields of view radiating out from the agent and the seventh sensor indicating either 

the flow rate of the selected hex or the highest flow rate in any hex observed, as described 

above.  Since the simulator does not model heterogeneous sensors (i.e. being able to 

observe farther in one direction than the others) and scouts can only be destroyed when 

the enemy occupies their hex (i.e. there is no advantage to orienting towards the enemy to 

present a smaller silhouette or greater protection from frontal armor), there is not any 

obvious evolutionary advantage to more refined sensing.  However, it may provide 

greater flexibility or lead to a more effective placement strategy than simpler networks 

can provide, so the directional sensor model is evaluated in the test program. 

 

4.2.4 Comparison Baselines 

Since team performance varies considerably based on the scenario map, 

environment characteristics, and number of units, the specific team score for a given 

iteration is not useful for comparison.  Therefore, the performance of these agents will be 

compared with the performance of a baseline agent for the same map and conditions.   

The first type of baseline agent will randomly choose a hex in the reconnaissance 

zone, representing the lowest possible hurdle to overcome.  The second method is slightly 

more complex.  Fifty random hexes in the reconnaissance zone are sampled and the scout 

is placed in the one that can see the largest number of hexes.  Initial tests revealed that 



 27 

this led to the agents clumping together in one spot leading to very poor coverage of the 

map.  Therefore, the shared spotting fitness approach described in Section 4.3.1 was 

incorporated with the maximum hex view approach by discounting the value of hexes 

that are already observed by other units.  This modified maximum hex view approach 

aims to observe the largest number of hexes with a bias towards those that are not already 

covered. 

 

4.3 FITNESS FUNCTIONS 

The performance of an individual organism in an iteration is evaluated according 

to a fitness function.  At the end of each epoch, the organisms with the highest fitness are 

retained and mutated while those with the lowest fitness are discarded.  This thesis 

considers individual fitness as well as bonuses to individual fitness based on the team’s 

overall performance. 

  

4.3.1 Simple Greedy vs. Shared Spotting 

The simplest approach to fitness is a greedy approach which gives a point for 

every enemy unit that a scout can observe.  This process repeats for every tick and the 

final score is normalized by the total number of possible spots (i.e. number of enemy units 

* time spent in the reconnaissance and enemy zones).  Even though this results in very 

low fitness results on the scale of [0, 1], organism selection for mutation and reproduction 

is unaffected because organisms are chosen based on its fitness relative to that of other 

organisms in the population. 

The second approach to fitness is shared spotting, which discounts the observed 

value of hexes which other scouts can observe.  Since the goal is to observe enemy units 
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as they cross the map, there should be some incentive for scouts to disperse.  Therefore, 

under shared spotting, the flow rate of each hex is divided by the number of friendly 

scouts that can see that hex.  This divisor can be modified as needed to scale how strictly 

the user wants to penalize overlapping fields of vision. 

 

4.3.2 Shared Team Fitness 

Since the objective is for the team as a whole to perform well in spotting enemy 

units, another approach to fitness is to add the team’s normalized performance to the 

unit’s fitness.  Since this bonus fitness is only awarded to the agents that participated in a 

given iteration, over time this boost should favor the evolution of agents that work 

together better.  

 

4.4 DEPLOYMENT RESTRICTIONS 

An additional parameter for experimental setup restricts scout agents to choosing 

a location that offers concealment (high grass or trees).  This approach reflects the 

military doctrine that “[scouts] may need to pass up a position with favorable observation 

capability but with no cover and concealment in favor of a position that affords better 

survivability.”[3]  Separate baseline functions are evaluated for forced concealment and 

open deployment, and the performance of the scout agents is only compared with the 

baseline that uses the same deployment restrictions. 

 

4.5 SCENARIOS 

Two training scenarios and three testing scenarios were developed for this thesis.  

Each scenario is described below to include the reason it was developed and two maps to 
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help visualize the scenario.  The first map indicates the terrain, possible enemy routes, 

and the friendly and enemy zones.  The second is an equilibrium flow rate map that 

indicates what an organism’s sensors can detect.   

4.5.1 Calibration Scenario 

  

(a) (b) 

Figure 4.1: Calibration scenario with possible enemy routes (a) and the vapor flow rate 

map (b).  The large forest in the center of the map limits visibility to the 

central corridor and two clearings so evolved scout agents should be 

concentrated in or alongside those areas. 

The calibration scenario (Figure 4.1) was the basis scenario used for early testing 

of BBMS.  Each iteration had ten scouts with a maximum visibility of ten hexes.  There 

are three possible enemy routes on the map: the central corridor and clearings in the 

forest along the north and south edges of the map, with the remainder of the 

reconnaissance zone consisting of trees.  This scenario was used to determine if the scout 

agents were evolving properly since the only positions where agents could score fitness 

was either in, or alongside the central corridor or clearings.  In addition to this basic 

validation, the calibration scenario was also used to evaluate the impact of changing the 

starting JNEAT parameters and network formation variables (e.g. starting number of 

nodes and connectivity and mutation rate).  Finally, due to the limited and narrow 
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visibility corridors, the average death rate for scout agents is very high in this scenario.  

Therefore, changing the death penalty factor and restricting scout deployment would have 

the greatest impact to team performance on this map. 

 

4.5.2 Training Scenario 

  

(a) (b) 

Figure 4.2: Training scenario map with possible enemy routes (a) and the vapor flow rate 

map (b).  Despite the large open area in the south central and southeast area 

of the map, the terrain and the enemy starting location causes enemy routes 

to only cover the northern and western portions of the map.  Therefore, 

evolved agents should be concentrated in those areas of the map. 

This training scenario was designed to be larger than the calibration scenario and 

with more diverse terrain.  The enemy starting position in the northeast corner of the map  

and the forest running east-west along the center of the map restricts enemy movement to 

roughly half of the total map area.  In order to make the placement of scouts more critical 

than in the calibration scenario, each iteration had only five scouts and maximum 

visibility was reduced to five hexes.  The layout of the terrain and corresponding impact 

on the vapor flow rate should evolve organisms that concentrate in the northern half of 

the map. 
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4.5.3 Testing Scenarios 

 
 

(a) (b) 

Figure 4.3: Scenario 41 map with possible enemy routes (a) and the vapor flow rate map 

(b).  This scenario was designed with a large number of corridors in the 

eastern half of the map to funnel into two corridors in the west. 

Three maps were selected for testing, intended to cover a variety of environments 

to see how well the agents can generalize to different conditions.  All testing scenarios 

have five scout agents and a maximum visibility of five hexes. 

The Scenario 41 map (Figure 4.3) depicts enemy forces advancing over a very 

broad front.  Nine enemy units are grouped by threes in the east and converge on the 

objective in the northwest.  Enemy routes on any given iteration will cover a large portion 
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of the map and funnel through two chokepoints near the objective.  This represents a 

target-rich environment in which there aren’t enough scouts to cover the entire sector. 

 

  

(a) (b) 

Figure 4.4: Durango Valley map with possible enemy routes (b) and vapor flow map (b).  

This map uses terrain from a U.S. Army Tactical Decision Game and 

represents a situation in which there are a sufficient number of scouts to 

cover the reconnaissance zone. 

The “Durango Valley” map (Figure 4.4) is taken from a US Army Tactical 

Decision Game published in Armor magazine in 1997 [15]; the only difference is that in 

this thesis, the hills from the Tactical Decision Game have been replaced by trees.  This 

map was included because it represents a map developed by a third party for a military 

exercise.  It contains six enemy units grouped by threes and due to the smaller scale 

compared to Scenario 41 (Figure 4.3), this represents a situation in which there are 

sufficient assets to screen the entire sector against a similarly sized enemy force.   
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(a) (b) 

Figure 4.5: Steel Panthers map with possible enemy routes (a) and vapor flow map (b).  

This map was randomly generated from the wargame “Steel Panthers.”  This 

map is characterized by many short, narrow passages through the scattered 

forest and represents a situation of a small enemy unit trying to infiltrate 

through the screen line.  

The “Steel Panthers” map was generated by the computer game “Steel Panthers: 

Main Battle Tank.”[25]  This game simulates turn-based military battles in the post-

World War II era and includes a random map generator. Since BBMS does not have 

automatic world generation features outside of a random distributions, a random map 

from this computer game was converted to BBMS by replacing the buildings in the Steel 

Panthers map with trees (since buildings block line-of-sight and impede movement in a 

similar fashion to forested areas).  This scenario involves a single enemy unit which 

represents an enemy scout vehicle trying to infiltrate through the reconnaissance zone.  

The scattered forest in the center of the map offers numerous concealed routes with short 

lines-of-sight and two wider corridors present along the northern edge of the map and 

angling southwest from the starting position. 
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4.6 CONCLUSION 

The experiments in this thesis are designed to cover a wide range of parameters 

from sensor configurations and fitness types to the scenarios themselves.  Each test 

scenario was chosen to reflect a different situation and terrain ranging from overstretched 

scouts trying to screen a sector with inadequate resources to trying to locate a lone enemy 

scout attempting to infiltrate the area.  The variety of scenarios and parameters will 

provide insight into the performance of evolved scout agents in general and will set the 

conditions for further research in the future. 
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Chapter 5: Results 

Each of the organism types and fitness functions in Sections 4.2, 4.3, and 4.4 were 

trained on the Training Scenario map and evaluated on the three testing scenarios 

described in Section 4.5.  Their fitness during training is analyzed to determine how 

many epochs it takes for the networks to burn in and the impact on overall team 

performance.  The analysis then shifts to the performance of the network on the testing 

scenarios and compares it to the random and maximum hex view baselines in Section 

4.2.4. 

 

5.1 TRAINING AND TESTING PARAMETERS 

All neural networks were trained on the Training Scenario map with a population 

size of 50 with five agents per iteration and a global visibility range of five hexes.  Each 

network was evaluated ten times after which the lower half in terms of fitness were 

discarded and replaced by mutated versions of the survivors.  The decision to average 

fitness over ten iterations came from an analysis of its impact on team performance and 

the standard deviation of the results.  This analysis, shown in Figure 5.1, reveals that 

averaging fitness over more than ten iterations has no impact on team performance and 

only a marginal decrease in the standard deviation, whereas fewer iterations increases the 

standard deviation and reduces performance.   

The starting network topology had five hidden nodes and an initial link creation 

probability of 10%.  In each epoch, there was a 2.5% chance for adding a link, adding a 

node, enabling or disabling a gene, and modifying a link weight.  Each network evaluated 

a prospective hex according to its sensor type and fitness function, and decided to stay if 
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the network output >= 0.75.  The training process stops after 50 epochs have been 

completed. 

 

 

Figure 5.1 Impact of averaging fitness over several iterations per epoch.  Averaging over 

fewer than ten iterations results in lower performance and increased 

standard deviation.  In contrast, averaging over more than ten iterations does 

not improve performance or significantly reduce standard deviation. 

Testing is done on the Scenario 41, Durango Valley, and Steel Panthers maps, 

with every fifth epoch being evaluated.  Five random organisms are drawn from the 

population at the start of each iteration and the population is tested on each COA ten 

times with the team performance averaged for each COA.  

 

5.2 BASELINE AGENT PERFORMANCE 

The random placement and maximum hex view comparison methods were 

evaluated on the same test suite as the standard neural networks, except they were tested 

on every epoch instead of every fifth one in order to have more data for averaging the 
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baseline results.  There were two sets of base cases: One forced the scout agents to select 

concealed positions and the other allowed the scouts to be placed anywhere in the recon 

zone. 

 

 Performance / Standard Deviation Death Rate 

Scenario Concealed Open Concealed Open 

Scenario 41 
8.545% / 1.65% 15.055% / 1.49% 0.14% 17.38% 

Durango Valley 
17.814% / 3.47% 26.265% / 3.26% 0% 17.32% 

Steel Panthers 
13.275% / 4.34% 13.159% / 1.16% 0.33% 3.22% 

Table 5.1: Random Placement team performance. 

 Performance / Standard Deviation Death Rate 

Scenario Concealed Open Concealed Open 

Scenario 41 25.031% / 8.60% 25.278% / 4.88% 0.08% 38.56% 

Durango Valley 57.770% / 7.37% 40.614% / 6.54% 0% 35.52% 

Steel Panthers 27.170% / 4.18% 24.184% / 7.05% 0.13% 3.95% 

Table 5.2: Maximum Visible Hex team performance. 

The performance of the random placement baseline in Table 5.1 represents the 

absolute lowest performance hurdle for evolved scout agents.  If the evolved scout agents 

are unable to outperform the randomly placed scouts, that would indicate that the gas 

diffusion method has no relation to the movement routes of the enemy forces.  Forcing 

the scouts to find concealment significantly reduces the performance of randomly placed 

agents because a greater portion of available deployment areas are surrounded by trees.  

The only hexes that would provide greater view range are on the perimeter of the forests.  

The team performance of the random baseline improves considerably when the 

concealment restriction is removed but results in a moderately high death rate.  The Steel 
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Panthers scenario has a much lower death rate because it only has one enemy unit, 

significantly reducing the chance that any given scout will lie directly in the enemy’s 

path. 

The maximum hex view performance in Table 5.2 reveals that concealed 

deployment offers similar or better performance than open deployment.  This is because 

the maximum hex view heuristic avoids deployment in the center of the forest and places 

units on the edges of forests.  This placement offers good vision to at least the front half 

of the scout and drops the death rate down to near-zero.  In contrast, open placement will 

invariably deploy away from the forest and will tend to find locations in the middle of an 

open area so it can see the most hexes.  The center of large maneuver corridors are the 

preferred routes for enemy vehicles and therefore the death rate of maximum hex view 

agents in the open is double that of the random agents except on the Steel Panthers map.   

Subsequent figures will evaluate the evolved scout agents against these two 

baselines and differentiate between open and concealed scout placement. 

 

5.3 SINGLE-SENSOR AGENTS 

Single-sensor agents take the sum of vapor flow rates within their field of view 

and normalize it by the highest vapor flow sum of any position on the map.  Figure 5.1 

shows a typical training profile for a single-sensor scout agent with the training 

performance of each type of single-sensor agent shown in Table 5.3.  In the training 

profile, there is a significant improvement in team performance after the first epoch 

representing burn-in, but there is no significant change to performance in the following 

epochs.  The shared spotting fitness function significantly increases the overall 

performance in the training scenario by about five percentage points (see Table 5.3) and 
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forcing the scouts to find concealment drops the 9.8% death rate to 0% as well as 

improving overall team performance by approximately 12 percentage points.   

 

 

Figure 5.2: Typical single-sensor training profile on Scenario 51.  All eight 

configurations show the same single epoch burn-in followed by no further 

improvement. 
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Force 

Conceal 

Share 

Fit 

Performance/STDEV 

(Simple Greedy) 

Performance/STDEV 

(Shared Spotting) 

No No 26.084% / 1.93% 32.366% / 3.14% 

No Yes 28.174% / 2.13% 32.892% / 2.53% 

Yes No 40.809% / 3.04% 45.174% / 1.99% 

Yes Yes 39.331% / 3.01% 44.911% / 3.44% 

Table 5.3: Single-sensor training performance.  Performance improves significantly 

under the shared spotting fitness function and when forcing concealed 

deployment. 

In the test cases, all types of single-sensor agents outperformed the random 

baseline following burn-in.  Figure 5.2 shows the team performance averaged over the 

three testing scenarios for the eight configurations of single sensor agents.  The shared 

spotting fitness function overall performed better than the greedy fitness, which after 45 

epochs had an overall team fitness 5.3 percentage points higher than the random baseline 

in unrestricted deployment.  However, even this top-performing configuration performed 

consistently worse than the maximum hex view baseline by 5.6 percentage points.  If 

deployment is restricted to tree and tall grass hexes, relative performance drops further 

and falls 2-3 percentage points below random deployment and a much larger 19-21 

percentage points below maximum hex view. 
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Figure 5.3: Comparison of overall-single sensor agent performance versus random and 

maximum hex view baseline methods.  Legend key: GF = greedy fitness, SS 

= shared spotting, TF = team fitness sharing, Hid = force deployment to 

concealed hexes, Rand is the average performance of the random baseline.  

After the initial epoch, all single-sensor scout agents outperform their 

respective random baseline indicating that the gas vapor model is indicative 

of enemy routes.  However, there is no single-sensor configuration that 

consistently outperforms the maximum hex view baseline with concealed 

agents performing over twenty percentage points below that baseline. 

A closer look at the results revealed that the performance of these agents varies 

considerably depending on which map and course of action they face (see Table 5.4).  
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Specifically, these networks all perform well in the Steel Panthers scenario, particularly 

the COA in which the enemy unit sneaks through the narrow paths in the center of the 

map.  This is a situation in which a narrow corridor has a sufficiently high flow rate to 

outweigh the limited number of hexes visible in there.  In contrast, units on the other 

maps pass through wider corridors making it much more likely for a max hex view agent 

to spot it.  

 

 

Table 5.4: Relative percentage point difference in team performance for a GF/Hid agent 

compared to the maximum hex view baseline.  The bottom is the average 

performance excluding epoch 1 due to burn-in.  Note the widely varying 

performance depending on the map and course of action. 

 

GF, Hid

EPOCH BalancedM-Cent M-Nor M-SouthScout Edges North1 North2 South S-Cent S-Nor S-SouthS-Flank

1 -10.2% -24.9% -3.5% -21.5% -19.6% -32.6% -49.4% -43.0% -47.4% -17.8% -5.7% -9.1% -24.4%

6 -11.8% -23.8% -3.5% -20.6% -17.0% -36.8% -54.2% -38.6% -39.0% -4.6% 7.1% -7.7% -16.7%

11 -10.6% -26.2% -4.0% -24.1% -20.4% -33.9% -48.2% -37.1% -33.5% -9.6% -2.1% -3.2% -16.2%

16 -11.2% -28.9% -6.9% -20.7% -19.3% -40.5% -46.9% -40.0% -37.6% -17.6% -0.5% -8.9% -18.9%

21 -12.4% -27.9% -5.1% -21.1% -18.4% -27.3% -44.5% -47.9% -47.5% -12.0% 2.8% -7.1% -6.5%

26 -11.0% -25.9% -3.4% -22.3% -21.0% -32.1% -47.0% -39.5% -38.2% -3.7% 6.1% 2.0% -2.7%

31 -9.4% -27.4% -1.3% -23.5% -19.2% -34.3% -51.0% -41.2% -34.9% -6.8% 5.9% 0.4% -4.9%

36 -8.5% -21.5% -2.5% -18.9% -20.7% -38.2% -51.2% -45.2% -37.4% -5.3% -0.1% -5.0% -9.4%

41 -11.7% -18.7% -5.4% -23.4% -22.7% -39.2% -43.7% -43.8% -32.8% -8.1% 5.3% 3.8% -15.8%

46 -11.1% -27.1% -0.5% -21.6% -17.6% -32.8% -47.9% -41.1% -41.9% -10.0% -1.3% 0.4% -16.5%

AVG 6+ -10.9% -25.3% -3.6% -21.8% -19.6% -35.0% -48.3% -41.6% -38.1% -8.6% 2.6% -2.8% -12.0%

Scenario 41 Durango Valley Steel Panthers
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Figure 5.4: Labeled COAs for Steel Panthers test with vapor flow overlay.  Note that the 

worst performance vis a vis max hex view is on the “South Flank” COA 

because the large open space on the south flank is attractive to that heuristic 

whereas the “Sneaky Center” COA is not. 

5.4 DUAL-SENSORS 

The dual-sensor networks evaluated here have their second sensor attuned to the 

highest flow rate within the agent’s field of view.  Figure 5.4 shows the typical training 

profile for the dual-sensor networks over all eight configuration types.  The burn-in 

period for dual-sensor networks is generally longer than for single-sensor networks, 

though still fairly short at one to three epochs.  As with the single-sensor agents, forcing 

the agents to find a concealed spot drops the death rate from 7-20% for this class of agent 

down to 0%.   
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Figure 5.5: Typical dual-sensor training profile from Scenario 51.  Scenario parameters 

are at the top.  Note the longer burn-in compared to single-sensor.  Also, 

since this configuration forces deployment in concealed hexes, the death rate 

is extremely low. 

 

Force 

Conceal 

Share 

Fit 

Performance/STDEV 

(Simple Greedy) 

Performance/STDEV 

(Shared Spotting) 

No No 31.136% / 3.16% 37.755% / 3.68% 

No Yes 32.125% / 1.81% 36.555% / 3.63% 

Yes No 37.178% / 3.87% 44.794% / 3.23% 

Yes Yes 38.015% / 3.54% 44.765% / 3.70% 

Table 5.5: Dual-sensor training performance.  Performance compared to single-sensor 

training performance is similar for forced concealment, but four to five 

percentage points better for unrestricted deployment. 
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Performance on the training scenario shows that the dual-sensor approach yields 

comparable performance to single-sensor agents when forced to find a concealed 

location.  However, the second sensor improves performance by four to five percentage 

points on unrestricted placement.   

The dual-sensor agents across the board perform better than single-sensor agents 

by about five percentage points (see Figure 5.4).  As before, dual-sensor agents 

consistently outperform random placement with unrestricted deployment seeing the best 

relative gains.  Furthermore, the unrestricted shared spotting fitness function reaches one 

percentage point shy of the max hex view baseline.   

 

 

Table 5.6: Relative percentage point difference in team performance between the best 

performing dual-sensor agent and the max hex view comparison method.  

As with single-sensor agents, performance exceeds that of max hex view on 

the Steel Panthers S-North COA and comes close on the Steel Panthers S-

South and Scenario 41 M-North. 

SS, TF, Hid

EPOCH BalancedM-Cent M-Nor M-SouthScout Edges North1 North2 South S-Cent S-Nor S-SouthS-Flank

1 -10.5% -27.3% -4.5% -22.4% -22.2% -34.8% -46.0% -39.4% -39.4% -11.3% -5.9% -8.2% -20.9%

6 -9.9% -25.9% -5.0% -16.0% -17.0% -37.9% -40.5% -34.5% -32.9% -3.5% 14.6% -3.2% -11.8%

11 -12.3% -20.3% -2.7% -19.0% -18.4% -31.2% -48.4% -40.0% -37.5% -8.1% 3.8% 1.1% -12.7%

16 -15.1% -27.5% -3.4% -23.8% -21.1% -32.6% -50.0% -41.9% -37.9% -12.4% 6.3% -2.1% -12.9%

21 -9.9% -20.4% -7.2% -22.3% -20.0% -29.9% -45.4% -33.8% -33.4% -7.0% 6.7% -3.9% -14.0%

26 -9.5% -25.6% -2.7% -16.7% -20.1% -33.4% -49.9% -39.0% -43.9% -8.7% 3.8% -4.3% -14.2%

31 -10.4% -28.9% -6.4% -18.5% -17.6% -34.7% -57.1% -43.7% -39.7% -10.5% -7.9% -4.1% -16.9%

36 -10.4% -22.6% -6.0% -21.1% -18.7% -35.7% -52.2% -47.0% -29.0% -13.3% -0.7% -3.4% -14.0%

41 -12.1% -27.5% -7.0% -22.3% -21.0% -30.5% -49.5% -38.6% -48.1% -9.8% -6.9% 0.0% -8.5%

46 -12.0% -24.7% -4.4% -18.0% -20.9% -37.7% -47.9% -42.5% -37.2% -7.6% 4.7% -5.7% -17.8%

AVG 6+ -11.3% -24.8% -5.0% -19.7% -19.4% -33.7% -49.0% -40.1% -37.7% -9.0% 2.7% -2.8% -13.7%

Scenario 41 Durango Valley Steel Panthers
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Table 5.7: Same type of agent as in Table 5.6, but without forcing concealment.  Note 

that there is a separate max hex view baseline for concealed and unrestricted 

agents. 

 

 

Figure 5.6: Comparison of overall sensor performance versus the random and max hex 

baselines. 

SS, TF

EPOCH BalancedM-Cent M-Nor M-SouthScout Edges North1 North2 South S-Cent S-Nor S-SouthS-Flank

1 -10.3% -6.1% -7.0% -7.8% -14.4% -15.1% -19.9% 2.2% 1.8% -0.6% -4.3% -15.9% -7.6%

6 -9.6% 0.7% -7.1% -11.1% -14.1% -15.9% -12.7% 6.3% 0.3% 3.7% -2.4% -8.4% -15.6%

11 -8.8% -2.9% -5.2% -11.9% -12.4% -7.5% -9.1% 2.9% -3.8% 13.0% 5.6% -12.5% -7.8%

16 -9.0% -8.1% -2.6% -13.1% -14.0% -14.1% -17.2% -4.9% -5.0% 2.2% 4.8% -7.9% -7.6%

21 -9.8% -6.4% -3.8% -13.9% -17.0% -14.1% -16.5% -1.5% -5.9% -1.9% -1.6% -16.6% -8.7%

26 -10.4% -4.9% -6.8% -12.0% -13.5% -16.0% -20.0% 9.7% -3.4% 5.4% -2.4% -10.9% -6.9%

31 -8.8% 0.3% -7.0% -11.9% -14.9% -11.5% -13.0% 12.4% -12.0% -1.5% 5.6% -10.0% -0.5%

36 -5.6% -2.7% -5.9% -15.2% -15.8% -10.9% -10.2% 3.0% -4.3% -3.9% 3.8% -9.8% -11.2%

41 -9.4% -4.6% -0.3% -14.9% -12.8% -12.2% -11.3% 3.3% -0.2% 1.8% 5.0% -13.4% -8.1%

46 -4.6% 5.3% -7.1% -9.5% -9.8% -10.3% -9.7% 3.6% 3.1% 0.0% 7.7% -10.2% -3.6%

AVG 6+ -8.4% -2.6% -5.1% -12.6% -13.8% -12.5% -13.3% 3.9% -3.5% 2.1% 2.9% -11.1% -7.8%

Scenario 41 Durango Valley Steel Panthers
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The relative performance by COA of a hidden dual-sensor agent in Table 5.6 is 

very similar to that of a hidden single-sensor agent in Table 5.4, outperforming maximum 

hex view on the Steel Panthers S-North COA and coming close in the Steel Panthers S-

South and Scenario 41 M-North COAs.  Table 5.7 shows the performance by COA of an 

unrestricted dual-sensor agent, which has significantly better relative performance in 

Durango Valley, particularly COA North2 and COA South.  These results show that the 

dual-sensor approach offers an incremental improvement to the team’s performance but 

does not change the underlying method that the population evolves over time. 

 

5.5 DIRECTIONAL SENSORS 

The directional sensor model exhibits some unique differences in training from 

the single and dual sensor models.  The typical training profile diverges between the 

shared spotting fitness function and the simple greedy function.  The greedy approach 

yields a performance profile similar to that of the single- and dual-sensor organism with 

performance stabilizing within the first few generations and remaining largely unchanged 

for the remaining training epochs.  In contrast, three of the four directional sensor 

implementations with shared spotting fitness (see Figure 5.6) continued to improve in 

small increments through the first 30-35 generations. 
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Figure 5.7: Progressive learning in a directional sensor shared spotting agent.  In contrast 

to previous training profiles, team performance improves over the first thirty 

epochs before stabilizing. 

The simple greedy directional agents perform roughly on par with the dual agents 

though the unrestricted agents have a significantly lower death rate averaging about 7.5% 

compared to 14.6% for dual unrestricted agents.  The main performance difference was 

found in the shared spotting directional agents.  Taking into account the long burn-in 

time, the average performance of the network, once it matures, is up to six percentage 

points higher than the best performing dual network. 
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Force 

Conceal 

Share 

Fit 

Performance/STDEV 

(Simple Greedy) 

Performance/STDEV 

(Shared Spotting) 

No No 33.84% / 2.15% 47.19% / 3.61% 

No Yes 37.15% / 2.74% 49.97% / 2.49% 

Yes No 36.75% / 1.71% 50.97% / 2.88% 

Yes Yes 37.87% / 1.48% 46.74% / 1.26% 

Table 5.8: Directional sensor training performance, with a burn-in of 30 generations.  The 

shared spotting training performance of 46-50% represents a 6 to 13 

percentage point improvement over training performance of dual agents. 

The superior performance of the directional sensor model in training does not 

carry over to the test suite (see Figure 5.7).  Its best performance is about six percentage 

points below the max hex view baseline and about four percentage points below the best 

dual sensor agents.  When considering performance in individual COAs (Table 5.9), the 

dual-sensor and directional sensor populations outperform the max hex view baseline on 

the same courses of action, though the directional sensor population does particularly 

poor against the “S-Flank” scenario in “Steel Panthers” averaging 25 percentage points 

below the baseline, as opposed to only eight percentage points below for the dual-

sensors.   

 

Table 5.9 

SS

EPOCH BalancedM-Cent M-Nor M-SouthScout Edges North1 North2 South S-Cent S-Nor S-SouthS-Flank

1 -8.2% -6.6% -5.7% -8.9% -14.0% -11.4% -11.9% 6.4% 0.6% 3.7% -4.3% -15.7% -17.4%

6 -11.4% -8.3% -7.4% -10.8% -19.7% -10.0% -15.5% 10.4% -7.9% 3.3% -0.2% -5.9% -18.3%

11 -8.2% -9.7% -7.1% -12.5% -16.4% -17.0% -9.8% 0.4% -8.6% 10.4% 7.3% -9.1% -25.3%

16 -10.3% -1.8% -5.2% -2.9% -17.9% -10.7% -8.0% 15.2% -4.6% 8.9% 9.4% -4.1% -29.3%

21 -10.7% -10.0% -8.6% -16.4% -13.6% -8.5% -13.6% 6.8% -1.1% 5.0% 9.6% -1.8% -27.8%

26 -9.0% -3.3% -1.6% -12.7% -17.5% -12.6% -10.2% 2.0% -10.9% 3.9% 5.4% -6.1% -21.6%

31 -10.0% -0.5% -5.1% -13.9% -14.4% -9.7% -14.0% 11.0% -11.1% 11.3% 13.5% -3.2% -22.0%

36 -10.2% 1.2% -6.1% -11.6% -20.9% -10.5% -16.0% 10.3% -4.0% 10.8% 4.8% -2.9% -24.9%

41 -7.3% 4.2% -7.7% -9.7% -12.9% -10.6% -16.5% 9.8% -14.0% 7.0% 0.5% 0.7% -31.8%

46 -10.3% 4.3% -6.8% -3.0% -12.1% -11.3% -14.3% 6.9% -14.5% 5.2% 1.7% 0.5% -25.8%

AVG 6+ -9.7% -2.7% -6.2% -10.4% -16.2% -11.2% -13.1% 8.1% -8.5% 7.3% 5.8% -3.5% -25.2%

Scenario 41 Durango Valley Steel Panthers
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Table 5.9: Relative percentage point difference in team performance compared to max 

hex view baseline.  This configuration outperforms maximum hex view on 

the same COAs as dual-sensor shared spotting performance (Table 5.7) and 

does particularly well on Durango Valley COA North 2 and Steel Panthers 

COA S-Center. 

 

Figure 5.8: Comparison of overall sensor performance versus the random and max hex 

baselines.  Despite significantly higher training performance, relative 

performance averaged over all testing COAs is similar to that of dual-sensor 

networks in unrestricted deployment.  Restricted deployment of directional 

networks does not offer a higher maximum performance compared to dual-

sensor networks but there is less variance between the different 

configurations. 

5.6 IMPACT OF TRAINING SCENARIO 

A final series of experiments were run to determine how much the training 

scenario affected testing performance.  The dual- and directional sensor configurations 
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with shared spotting, team shared fitness, and forced concealment were selected for this 

evaluation because they offered the best overall performance from the tests in Section 

5.3, 5.4, and 5.5.  New populations with these configurations were trained on each of the 

four scenarios and then tested on the same four scenarios (Figure 5.9).   

Surprisingly, the choice of training scenario only has a minor impact on the 

resulting team performance.  Furthermore, there is no advantage to performance when 

agents are evaluated on the same scenario they were trained on.  Based on the results, 

training on Durango valley yields slightly better performance, the training scenario and 

Scenario 41 yield average performance, and Steel Panthers offers slightly worse 

performance.  
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Figure 5.9: Performance by scenario compared to the training scenario.   Durango Valley 

is the training scenario that produced the best results in testing and 

surprisingly there is no advantage if the evaluation and testing map are the 

same. 
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5.7 CONCLUSION 

The dual- and directional sensor configurations delivered the best performance of 

the scout agents considered, both consistently outperforming randomly placed agents 

regardless of scenario.  Furthermore, the shared spotting fitness function usually 

performed better than greedy fitness.  On the other hand, adjusting individual fitness 

based on team performance produced inconsistent results, sometimes considerably 

improving the results (such as concealed dual-sensor shared-spotting in Figure 5.5) and 

sometimes performing worse than individual fitness (such as concealed directional-sensor 

shared spotting in Figure 5.7).   
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Chapter 6: Discussion and Future Work 

6.1. PERFORMANCE RELATIVE TO BASELINE 

As currently implemented, evolving agents to place scouts based on the gas 

diffusion model all show an improvement over random placement, showing that the flow 

rate is at least somewhat helpful in placing units.  However, its inability to outperform the 

maximum hex view heuristic in most cases shows that more refining and testing needs to 

be done before these types of agents become feasible.  In particular, there are certain 

maps and COAs in which the evolved agents consistently outperformed the maximum 

hex view heuristic, such as situations in which the enemy forces are only advancing 

through a portion of the map instead of a broad-front approach. 

For example, on the scenario “Durango Valley” the unrestricted agents performed 

considerably better against the maximum hex view baseline in COA North 2 versus COA 

North 1.  A look at the enemy unit paths for these COAs (Figure 6.1) shows the main 

difference is that the southern valley is unused in COA North 2.  Doing further testing on 

maps and COAs categorized by the enemy unit coverage (the portion of the map that 

enemy units see and can be seen during their routes) will help determine if that is the 

main contributing factor to outperforming maximum hex view.  

Another way to improve the performance of the scout agents is to evolve them 

using several maps with different types of terrain on them.  Due to the short burn-in time 

of all but the shared spotting directional organisms, this would not significantly extend 

the length of the training period compared to what was tested in this thesis.  Care would 

need to be taken to ensure that the networks are not overtrained on any individual map. 
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Figure 6.1: Comparison of COA North 1 and COA North 2 on the Durango Valley map.  

Unrestricted scout agents outperformed the maximum hex view baseline in 

COA North 2 yet performed  poorly against the same baseline in COA 

North 1, possibly because COA North 1 covers a greater portion of the map. 

6.2 COMPARISON OF ORGANISM TYPES 

Dual- and directional networks consistently matched or outperformed single-

sensor networks in these experiments.  In the domain of unrestricted deployment, the best 

dual-sensor network configuration had considerably better performance (about four 

percentage points) than the best directional sensor network configuration, but the results 

also had greater variance from epoch to epoch than the directional networks.  When 

deployment is restricted to concealed hexes, directional agents of all types performed 

three to four percentage points better than dual agents. 

Of the fitness functions evaluated, shared spotting generally outperformed simple 

greedy, but there are some instances such as the greedy/team fitness dual-sensor 

configuration and the restricted directional sensor configurations that the greedy function 

performance matched or exceeded shared spotting.  Sharing team fitness generally led to 

marginal, if any, improvements in team performance.  There is one notable exception: 

The hidden dual sensor with shared spotting outperformed its non-team sharing 

counterpart by five percentage points. 
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6.3 USEFULNESS OF THE GAS DIFFUSION METHOD 

The gas diffusion method accurately identifies chokepoints along the most likely 

enemy routes between their starting point and objective.  Furthermore, improvements to 

Burgess’ implementation [1] resulted in an eightfold improvement in the time required to 

find an equilibrium state on a new map.  Faster performance makes it easier to employ 

the gas diffusion method and update the vapor map, such as after discovering enemy 

units in an unexpected location. 

The vapor flow rates at equilibrium state are good indicators of chokepoints in the 

terrain, but also are high in the area immediately surrounding the source and sink.  If a 

scout can observe these high flow rates around the source and sink, it may give undue 

weight to observing the source and sink compared to chokepoints in the terrain.  If the 

source and sink represent concrete enemy starting and ending locations, then this is a 

good thing because observing the source and sink will guarantee detection of the enemy.  

On the other hand, if the source and sink represent best guesses as to the enemy locations 

and objectives, the high flow rates could lure scout agents away from observing 

chokepoints in the center of the map.   

To prevent the flow rates around the source and sink from having undue 

influence, vapor flow rates seen by the scout agents should be discounted around those 

areas by a factor that represents the certainty that it represents the physical starting and 

ending positions of enemy forces.  The vapor sink in particular should be considered for 

modified flow rates because the enemy does not always have to physically occupy an 

objective in order to accomplish their mission (e.g. if the enemy forces are trying to 
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isolate the objective, they can accomplish this by securing the routes to and from the 

objective while avoiding the objective itself). 

   

6.4 SEQUENTIAL DEPLOYMENT OF SENSORS 

Currently, the deployment of all scout agents at the start of the scenario represents 

either fixed sensors emplaced or left behind by other forces, or units that have been in the 

area for a long time and have developed fixed observation points.  If we change 

deployment so that additional scouts become available throughout the evaluation, and 

update the vapor density map as enemy units are detected (e.g. by having a new unit 

represent a mobile vapor source), a smaller number of scouts would be needed to cover 

the same area and react to enemy movement.  Some scouts would occupy a screen line 

forward to initially detect the enemy, allowing subsequent units to be placed based on 

what they can observe. 

The issue of non-real time vapor equilibrium can be mitigated by continuing to 

update the vapor map during the scenario.  This would cause the vapor map to gradually 

change in response to the spotted enemy units, with several vapor map updates every tick. 

 

6.5 MOBILE SENSORS AND COUNTER DETECTION 

The step beyond sequential sensor deployment would be to enable the scout 

agents themselves to move, e.g. in response to an updating vapor map described above.  

Another option is to add more outputs to the network similar to the roving eye evolved 

for “Go”, so that scouts can move and would be able to trail enemy units.  Adding more 

realistic rules for enemy counterdetection and destroying scouts from a distance and 
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allowing scouts to move would better simulate soldiers on the ground as opposed to the 

current agent behavior which is more akin to immobile sensors than a manned position. 

 

6.6 ADVERSARIAL TESTING 

Currently, enemy courses of action are static and have to be hand-coded by the 

scenario designer.  To meet the intended purpose of improving AI routines in military 

simulations, it would be far better to train it against actual people.  One way would be to 

build this simulator into a two-player machine learning game akin to OpenNERO [21] in 

which each player trains and evolves a network to serve as their scouts while they control 

other forces in a simulated battle.  For a more passive approach, collecting data on player 

movement routes over a similar map in a game platform (e.g. in Steel Panthers: Main 

Battle Tank or observing military units conducting exercises on computer simulations) 

would provide a wider variety and more realistic sample of enemy movement routes.  
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Chapter 7: Conclusions 

This thesis takes a first look at evolving scout agents using the gas diffusion 

method to observe enemy units in a simulated environment.  In its current state, evolved 

scout agents consistently outperform randomly placed scouts and they are able to 

outperform scouts placed by the maximum hex view heuristic in a number of interesting 

situations.  Performance compared to this baseline varies significantly from scenario to 

scenario, which invites further research to determine what situations evolved scout agents 

would be the most useful and to determine if there are specific sensor configurations and 

training regimens which can outperform heuristics on a more consistent basis. 

Although there has been previous work in developing computer tools to aid 

humans in military planning, there has been very little work in developing autonomous 

agents to exhibit human-like behavior in simulated environments or the real world.  This 

thesis is a first step in exploring that area and lays the groundwork for future and more 

detailed studies. 
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