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Abstract
We consider a general approach to knowledge
transfer in which an agent learning with a neural
network adapts how it reuses existing networks as it
learns in a new domain. Networks trained for a new
domain are able to improve performance by selec-
tively routing activation through previously learned
neural structure, regardless of how or for what it
was learned. We present a neuroevolution imple-
mentation of the approach with application to rein-
forcement learning domains. This approach is more
general than previous approaches to transfer for re-
inforcement learning. It is domain-agnostic and re-
quires no prior assumptions about the nature of task
relatedness or mappings. We analyze the method’s
performance and applicability in high-dimensional
Atari 2600 general video game playing.

1 Introduction
The ability to generally apply any and all available previously
learned knowledge to new tasks is a hallmark of general in-
telligence. Transfer learning is the process of reusing knowl-
edge from previously learned source tasks to bootstrap learn-
ing of target tasks. For reinforcement learning (RL) agents,
transfer is particularly important, as previous experience can
help to efficiently explore new environments. Knowledge ac-
quired during previous tasks also contains information about
the agent’s task-independent decision making and learning
dynamics, and thus can be useful even if the tasks seem com-
pletely unrelated.

Existing approaches to transfer learning for reinforcement
learning have successfully demonstrated transfer of varying
kinds of knowledge [Taylor and Stone, 2009], but they tend
to make two fundamental assumptions that restrict their gen-
erality: (1) some sort of a priori human-defined understanding
of how tasks are related, (2) separability of knowledge extrac-
tion and target learning. The first assumption limits the appli-
cability of the approach by restricting its use only to cases
where the agent has been provided with this additional rela-
tional knowledge, or, if it can be learned, cases where task
mappings are useful. The second assumption implies further
expectations about what knowledge will be useful and how
it should be incorporated before learning on the target task

begins, preventing the agent from adapting the way it uses
source knowledge as it gains information about the target do-
main.

We consider General Reuse Of Modules (GReuseOM),
a general neural network approach to transfer learning that
avoids both of these assumptions, by augmenting the learn-
ing process to allow learning networks to selectively route
through existing neural modules (source networks) as they
simultaneously develop new structure for the target task.
Unlike previous work, which has dealt with mapping task
variables between source and target, GReuseOM is task-
independent, in that no knowledge about the structure of the
source task or even knowledge about where the network came
from is required for it to be reused. Instead of using map-
pings between task-spaces to facilitate transfer, it searches
directly for mappings in the solution space, that is, connec-
tions between existing source networks and the target net-
work. GReuseOM is motivated by studies that have shown
in both naturally occurring complex networks [Milo et al.,
2002] and artificial neural networks [Swarup and Ray, 2006]
that certain network structures repeat and can be useful across
domains, without any context for how exactly this structure
should be used. We are further motivated by the idea that
neural resources in the human brain are reused for countless
purposes in varying complex ways [Anderson, 2010].

In this paper, we present an implementation of GReuseOM
based on the Enforced Subpopulations (ESP) neuroevolution
framework [Gomez and Miikkulainen, 1997]. We validate our
approach first in a simple boolean logic domain, then scale up
to the Atari 2600 general game playing domain. In both do-
mains, we find that GReuseOM-ESP improves learning over-
all, and tends to be most useful when source and target net-
works are more complex. In the Atari domain, we show that
the effectiveness of transfer coincides with an intuitive high-
level understanding of game dynamics. This demonstrates
that even without traditional transfer learning assumptions,
successful knowledge transfer via general reuse of existing
neural modules is possible and useful for RL. In principle,
our approach and implementation naturally scale to transfer
from an arbitrary number of source tasks, which points to-
wards a future class of GReuseOM agents that accumulate
and reuse knowledge throughout their lifetimes across a vari-
ety of diverse domains.

The remainder of this paper is organized as follows: Sec-
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tion 2 provides background on transfer learning and related
work, Section 3 describes our approach in detail, Section 4
analyzes results from experiments we have run with this ap-
proach, and Section 5 discusses the implications of these re-
sults and motivations for future work.

2 Background
Transfer learning encompasses machine learning techniques
that involve reusing knowledge across different domains and
tasks. In this section we review existing transfer learning
methodologies and discuss their advantages and shortcom-
ings to motivate our approach. We take the following two
definitions from [Sinno and Yang, 2010]. A domain is an en-
vironment in which learning takes place, characterized by the
input and output space. A task is a particular function from
input to output to be learned. In sequential-decision domains,
a task is characterized by the values of sensory-action se-
quences corresponding to the pursuit of a given goal. A tax-
onomy of types of knowledge that may be transferred are
also enumerated in [Sinno and Yang, 2010]. As our approach
reuses the structure of existing neural networks, it falls under
‘feature representation transfer’.

2.1 Transfer Learning for RL
Reinforcement learning (RL) domains are often formulated as
Markov decision processes in which the state space comprises
all possible observations, and the probability of an observa-
tion depends on the previous observation and an action taken
by a learning agent. However, many real world RL domains
are non-Markovian, including many Atari 2600 games.

Five dimensions for characterizing the generality and au-
tonomy of algorithms for transfer learning in RL are given in
[Taylor and Stone, 2009]: (1) restrictions on how source and
target task can differ; (2) whether or not mappings between
source and target state and action variables are available to as-
sist transfer; (3) the form of the knowledge transferred; (4) re-
strictions on what classes of learning algorithms can be used
in the source and/or target tasks; (5) whether or not the algo-
rithm autonomously selects which sources to reuse.

Some of the most general existing approaches to transfer
for RL automatically learn task mappings, so they need not be
provided beforehand, e.g., [Taylor et al., 2007; 2008; Talvitie
and Singh, 2007]. These approaches are general enough to
apply to any reinforcement learning task, but as the state and
action spaces become large they become intractable due to
combinatorial blowup in the number of possible mappings.
These approaches also rely on the assumption that knowledge
for transfer can be extracted based on mappings between state
and action variables, which may miss useful internal structure
these mappings cannot capture.

2.2 General Neural Structure Transfer
There are existing algorithms similar to our approach in
that they enable general reuse of existing neural structure.
They can apply to a wide range of domains and tasks in
that they automatically select source knowledge and avoid
inter-task mappings. Knowledge-Based Cascade Correlation
[Shultz and Rivest, 2001] uses a technique based on cascade

correlation to build increasingly complex networks by insert-
ing source networks chosen by how much they reduce error.
Knowledge Based Cascade Correlation is restricted in that it
is only designed for supervised learning, as the source se-
lection depends heavily on an immediate error calculation.
Also, connectivity between source and target networks is lim-
ited to the input and output layer of the source. Subgraph
Mining with Structured Representations [Swarup and Ray,
2006] creates sparse networks out of primitives, or commonly
used sub-networks, mined from a library of source networks.
The subgraph mining approach depends on a computation-
ally expensive graph mining algorithm, and it tends to favor
exploitation over innovation and small primitives rather than
larger networks as sources.

Our approach is more general in that it can be applied to
unsupervised and reinforcement learning tasks, and makes
fewer a priori assumptions about what kind of sources and
mappings should work best. Although we only consider an
evolutionary approach in this paper, GReuseOM should be
extensible to any neural network-based learning algorithm.

3 Approach
This section introduces the general idea behind GReuseOM,
then provides an overview of the ESP neuroevolution
framework, before describing our particular implementation:
GReuseOM-ESP.

3.1 General Reuse Of Modules (GReuseOM)
The underlying idea is that an agent learning a neural net-
work for a target task can selectively reuse knowledge from
existing neural modules (source networks) while simultane-
ously developing new structure unique to a target task. This
attempts to balance reuse and innovation in an integrated ar-
chitecture. Both source networks and new hidden nodes are
termed recruits. Recruits are added to the target network dur-
ing the learning process. Recruits are adaptively incorporated
into the target network as it learns connection parameters
from the target to the recruit and from the recruit to the target.
All internal structure of source networks is frozen to allow
learning of connection parameters to remain consistent across
recruits. This forces the target network to transfer learned
knowledge, rather than simply overwrite it. Connections to
and from source networks can, in the most general case, con-
nect to any nodes in the source and target, minimizing as-
sumptions about what knowledge will be useful.

A GReuseOM network or reuse network is a 3-tuple G =
(M,S, T ) where M is a traditional neural network (feedfor-
ward or recurrent) containing the new nodes and connections
unique to the target task, with input and output nodes corre-
sponding to inputs and outputs defined by the target domain;
S is a (possibly empty) set of pointers to recruited source net-
works S1, ...,Sk; and T is a set of weighted transfer con-
nections between nodes in M and nodes in source networks,
that is, for any connection ((u, v), w) 2 T , (u 2 M ^ v 2
Si) _ (u 2 Si ^ v 2 M) for some 0  i  k. This construc-
tion strictly extends traditional neural networks so that each
Si can be a traditional neural network or a reuse network of
its own. When G is evaluated, we evaluate only the network
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induced by directed paths from inputs of M to outputs of M ,
including those which pass through some Si via connections
in T . Before each evaluation of G, all recruited source net-
work inputs are set to 0, since at any given time the agent is
focused only on performing the current target task. The pa-
rameters to be learned are the usual parameters of M , along
with the contents of S and T . The internal parameters of each
Si are frozen in that they cannot be rewritten through G.

The motivation for this architecture is that if the solution
to a source task contains any information relevant to solv-
ing a target task, then the neural network constructed for
the source task will contain some structure (subnetwork or
module) that will be useful for a target network. This has
been shown to be true in naturally occurring complex net-
works [Anderson, 2010], as well as cross-domain artificial
neural networks [Swarup and Ray, 2006]. Unlike in the sub-
graph mining approach to neural structure transfer [Swarup
and Ray, 2006], this general formalism makes no assump-
tions as to what subnetworks actually will be useful. One per-
spective that can be taken with this approach is that a lifelong
learning agent maintains a system of interconnected neural
modules that it can potentially reuse at any time for a new
task. Even if existing modules are unlabeled, they may still
be useful, simply due to the fact that they contain knowledge
of how the agent can successfully learn. Furthermore, recent
advances in reservoir computing [Lukoševičius and Jaeger,
2009] have demonstrated the power of using large amounts of
frozen neural structure to facilitate learning of complex and
chaotic tasks.

The above formalism is general enough to allow for an ar-
bitrary number of source networks and arbitrary connectivity
between source and target. In this paper, to validate the ap-
proach and simplify analysis, we use at most one source net-
work and only allow connections from target input to source
hidden layer and source output layer to target output. This is
sufficient to show that the implementation can successfully
reuse hidden source features, and analyze the cases in which
transfer is most useful. Future refinements are discussed in
Section 5. The current implementation, described below, is a
neuroevolution approach based on ESP.

3.2 Enforced Subpopulations (ESP)
Enforced Sub-Populations (ESP) [Gomez and Miikkulainen,
1997] is a neuroevolution technique in which different ele-
ments of a neural network are evolved in separate subpop-
ulations rather than evolving the whole network in a sin-
gle population. ESP has been shown to perform well an a
variety of reinforcement learning tasks, e.g., [Gomez and
Miikkulainen, 1997; 2003; Gomez and Schmidhuber, 2005;
Miikkulainen et al., 2012; Schmidhuber et al., 2007]. In stan-
dard ESP, each hidden neuron is evolved in its own subpop-
ulation. Recombination occurs only between members of the
same subpopulation, and mutants in a subpopulation derive
only from members of that subpopulation. The genome of
each individual in a subpopulation is a vector of weights cor-
responding to the weights of connections from and to that
neuron, including node bias. In each generation, networks
to be evaluated are randomly constructed by inserting one
neuron from each subpopulation. Each individual that par-

ticipated in the network receives the fitness achieved by that
network.

When fitness converges, i.e., does not improve over sev-
eral consecutive generations, ESP makes use of burst phases.
In initial burst phases each subpopulation is repopulated by
mutations of the single best neuron ever occuring in that sub-
population, so that it reverts to searching a �-neighborhood
around the best solution found so far. If a second consecu-
tive burst phase is reached, i.e., no improvements were made
since the previous burst phase, a new neuron with a new sub-
population may be added [Gomez, 2003].

3.3 GReuseOM-ESP
We extend the idea of enforced sub-populations to transfer
learning via GReuseOM networks. For each reused source
network Si the transfer connections in T between Si and M

evolve in a distinct subpopulation. At the same time new hid-
den nodes can be added to M and evolve within their own
subpopulations in the manner of standard ESP. In this way,
the integrated evolutionary process simultaneously searches
the space for how to reuse each potential source network
and how to innovate with each new node. Specifically, the
GReuseOM-ESP architecture (Figure 1) is composed of the
following elements:

• A pool of potential source networks. In the experiments
in this paper, each target network reuses at most one
source at a time.

• Transfer genomes defining a list of transfer connections
between the source and target networks. Each potential
source network in the pool has its own subpopulation
for evolving transfer genomes between it and the tar-
get network. Each connection in T is contained in some
transfer genome. In our experiments, the transfer con-
nections included are those such that the target’s inputs
are fully connected to the source’s hidden layer, and the
source’s outputs are fully connected into the target’s out-
puts. Therefore, the transfer genome only encodes the
weights of these cross-network connections.

• A burst mechanism that determines when innovation
is necessary based on a recent history of performance
improvement. New hidden recruits (source networks or
new single nodes) added during the burst phase evolve
within their own subpopulations in the manner of clas-
sic ESP.

All hidden and output neurons use a hyperbolic tangent
activation function. Networks include a single hidden layer,
and can include self loops on hidden nodes; they are other-
wise feedforward. The particulars of the genetic algorithm in
our implementation used to evolve each subpopulation mirror
those described in [Gomez, 2003]. This algorithm has been
shown to work well within the ESP framework, though any
evolutionary algorithm could potentially be substituted in its
place.

4 Experiments
We evaluate GReuseOM-ESP on two domains: a simple n-
bit parity domain mirroring that used to evaluate knowledge
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Figure 1: The GReuseOM-ESP architecture. Reused subnetworks of sources are boxed. Edges between input and source and between source
and output denote full connectivity between these layers. The genome in each subpopulation encodes weight information for the connections
from and to the corresponding recruit.

transfer in [Swarup and Ray, 2006], and the more complex
Atari 2600 video game playing domain. In both domains,
we first train scratch networks that do not reuse existing net-
works, that is, S is the empty set. We then reuse each scratch
network in training GReuseOM networks for different tasks.
We compare performance between scratch and transfer, and
between source-target setups. Results demonstrate the ability
of GReusOM-ESP to selectively reuse source structure.

4.1 N-Bit Parity
GReuseOM-ESP was initially evaluated under the boolean
logic domain using N -bit parity. The N -bit parity problem
has a long-standing history serving as a benchmark for basic
neural network performance. The N -bit parity function is the
mapping defined on N -bit binary vectors that returns 1 if the
sum of the N binary values in the vector is odd, and 0 oth-
erwise. This function is deceptively difficult for neural net-
works to learn since a change in any single input bit will alter
the output. Although N -bit parity is not fully cross-domain in
the stronger sense for which our approach applies, the input
feature space does differ as N differs, and it is useful for val-
idation of the approach and connection with previous work.

Performance is measured in number of generations to find a
network that solves N -bit parity within ✏ = 0.1 mean squared
error. In this experiment, networks were trained from scratch
with ESP for N = [2, 3, 4]. Then, each of these networks
was used as a source network for each N -bit parity target
domain with N = [3, 4, 5]. ESP, without transfer, was used
as a control condition for each target task. A total of 10 trials
were completed for each condition.

In this experiment, transfer learning was able to outper-
form learning from scratch for all three target tasks when
using some source task. For 3-bit and 4-bit parity, transfer

Source None 2-bit par 3-bit 4-bit
3-bit par 309.5 202 167.5 158
4-bit par 339 192.5 308 311

Ta
rg

et

5-bit par 626 780 720.5 542

Table 1: Median number of generations for task completion for all
N-bit parity source-target setups.

learning always outperformed learning from scratch for all
three possible sources. For the more complex 5-bit parity tar-
get task, transfer from the 4-bit network outperformed learn-
ing from scratch, while transfer from the simpler tasks did
not. This may be due to the significantly greater complexity
required for 5-bit parity over 2- or 3-bit parity. The limited
frozen structure may become a burden to innovation after the
initial stages of evolution. The more complex 4-bit parity net-
works have more structure to select from, and thus may assist
in innovation over a longer time frame.

4.2 Atari 2600 Game Playing
Our next experiment evaluated game playing performance
in the Atari 2600 game platform using the Arcade Learn-
ing Environment (ALE) simulator [Bellemare et al., 2013].
This domain is particularly popular for evaluating RL tech-
niques, as it exhibits sufficient complexity to challenge mod-
ern approaches, contains non-markovian properties, and en-
tertained a generation of human video game players. We used
GReuseOM-ESP to train agents to play eight games (Asterix,
Bowling, Boxing, Breakout, Freeway, Pong, Space Invaders,
and Seaquest) both from scratch and using transferred knowl-
edge from existing game-playing source networks. Neuroevo-
lution techniques are quite competitive in the Atari 2600 do-
main [Hausknecht et al., 2013], and ESP in particular has
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yielded state-of-the-art performance for several games [Bray-
lan et al., 2015].

Each source network was trained from scratch on a game
using standard ESP (GReuseOM-ESP with an empty reuse
set). Each source network was then used by a target network
for an evolutionary run for each other game. Each run lasted
200 generations with 100 evaluations per generation. Each in-
dividual i achieves some score i(g) in its game g. Let min(g)
be the min over all max scores achieved in a single generation
by any run of g. Let the fitness of i be i(g)�min(g). This en-
sures that fitness is always positive (in both boxing and pong,
raw scores can be negative). The fitness of an evolutionary
run at a given generation is the highest fitness achieved by an
individual by that generation.

We ran a total of 176 trials split across all possible setups:
training using each other game as a source, and training from
scratch. We use the ✏-repeat action approach as suggested
in [Hausknecht and Stone, 2015] to make the environment
stochastic in order to disable the algorithm from finding loop-
holes in the deterministic nature of the simulator. We use the
recommended ✏ = 0.25 1. Parameters were selected based on
their success with standard ESP.

To interface with ALE, the output layer of each network
consists of a 3x3 substrate representing the 9 directional
movements of the Atari joystick in addition to a single node
representing the Fire button. The input layer consists of a se-
ries of object representations manually generated as previ-
ously described in [Hausknecht et al., 2013], where the lo-
cation of each object on the screen is represented in an 8x10
input substrate corresponding to the object’s class. The num-
ber of object classes for the games used in our experiments
vary between one and four. Although object representations
are used in these experiments, pixel-level vision could also be
learned from scratch below the neuroevolution process, e.g.,
via convolutional networks, as in [Koutnı́k et al., 2014].

Domain Characterization
Each game can be characterized by generic binary features
that determine the requirements for successful game play, in
order to place the games within a unified framework. We use
binary features based on the existence of the following: (1)
horizontal movement (joystick left/right), (2) vertical move-
ment (joystick up/down), (3) shooting (fire button); (4) de-
layed rewards; and (5) the requirement of long-term plan-
ning. Intuitively, more complex games will possess more of
these qualities. The partial ordering of games by complex-
ity defined by these features is shown in Figure 2. The as-
signment of features (1), (2) and (3) is completely defined
based on game interface [Bellemare et al., 2013]. Freeway
and Seaquest are said to have delayed rewards because a high
score can only be achieved by long sequences of rewardless
behavior. Only Space Invaders and Seaquest were deemed
to require long-term planning [Mnih et al., 2013], since the
long-range dynamics of these games penalize reflexive strate-
gies, and as such, agents in these games can perform well
with a low decision-making frequency [Braylan et al., 2015].
Aside from their intuitiveness, these features are validated be-
low based on their ability to characterize games by complex-

1https://github.com/mgbellemare/Arcade-Learning-Environment/tree/dev
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pong
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freeway
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Figure 2: Vector of features for each game (indicated in black)
and lattice of games ordered by features. Every path from none to
g contains along its edges each complexity feature of g a exactly
once. Features: v = vertical movement, h = horizontal movement, s
= shooting, d = delayed reward, p = long-term planning.

ity and predict transferibility. For a simple metric of complex-
ity, let cmplx(g) be the number of the above features game g

exhibits.

Atari 2600 Results
There are many possible approaches to evaluating success
of transfer [Taylor and Stone, 2009]. For comparing perfor-
mance across games, we focus on time to threshold. To mini-
mize threshold bias, for each game we chose the threshold to
be the min of the max fitness achieved across all trials. Given
this threshold, the average time to threshold in terms of gen-
erations may be vastly different, depending on the average
learning curve of each game. These learning curves are quite
irregular, as illustrated in Figure 4. For each game we mea-
sure time in terms of percent of average time to threshold, and
the success rate is the proportion of trials that have achieved
the threshold by that time.

Figure 3 plots success over time for different groups of tri-
als. The leftmost plot compares the success rate of all transfer
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Figure 3: Success rate (proportion of trials that have reached the target threshold) by percent of average number of generations to threshold
of target game with trials (allowing comparisons across games with different average times to threshold) grouped by (1) scratch vs. transfer,
(2) target game, (3) source game.

Figure 4: Distributions of fitness for each game by generation over
all trials. Mean (black), standard error (dark gray) and standard de-
viation (light gray) are shown at each generation.

trials to scratch trials. It shows what we would expect from
transfer overall: networks that reuse frozen structure from
previous games are able to take advantage of that structure to
bootstrap learning. This works initially, but eventually scratch
catches up, as it becomes more difficult to innovate with a sin-
gle frozen structure. When trials are grouped by target (mid-
dle pane), we can see that some games are better targets for
transfer than others. As demonstrated in Figure 3, more com-
plex games (with respect to our game features) are generally
better targets than less complex. It is less clear what we can
draw from grouping trials by source (right pane). There is a
tighter spread than with targets, though there may still be a
tendency towards more complex games being better sources.
This may be counter-intuitive, as we might expect simpler
games to be easier to reuse. However, more complex games
have networks with more complex structure from which a
target network can, through the evolutionary process, select
some useful subnetwork that fits its needs. Similarly, a com-
plex domain will be more likely to be a good target, since
it requires a wider variety of structure to be successful, so
sources have a higher chance of satisfying some of that re-
quirement.

For comparing performance within a target game, we need
not resort to threshold normalization, and can instead focus
on raw max fitness. For reference, average and best fitness

game g cmplx(g) deg(g) deg�(g) deg+(g)
seaquest 5 8 4 4
space invaders 3 7 4 3
boxing 3 6 4 2
bowling 2 5 3 2
asterix 2 5 2 3
freeway 2 4 2 2
pong 1 4 1 3
breakout 1 1 0 1

Table 2: A total ordering of games by complexity score and degree
(total, in (-), and out (+)) in the transferability digraph with edge
cutoff 0.5 (Figure 5(a)).

for both transfer and scratch are given in Table 3. Note that
previously published approaches to Atari game-playing use
fully deterministic environments, making direct score com-
parisons difficult (see [Braylan et al., 2015] for a comparison
of ESP to other approaches in deterministic environments).

The transfer effectiveness of a source-target setup is the log
ratio between its average max fitness and the average max fit-
ness of that game from scratch. The digraphs in Figure 5 each
contain the directed edge from g1 to g2 only when transfer
effectiveness is above a specified threshold. These graphs in-
dicate that the more complex games serve a more useful role
in transfer than less complex. Consider the total ordering of
games by cmplx(g) given in Table 2. This ordering corre-
sponds exactly to that induced by the degree sequence (by
both total degree and in-degree) [Diestel, 2005] of the graph
with edge cutoff 0.5. However, for out-degree, the correlation
with respect to the ordering is less clear. This reflects Fig-
ure 3, in which there is more spread in success when grouped
by target (in-degree) vs. source (out-degree).

We see that we can predict the transfer effectiveness by
the feature characterizations we provided. The feature char-
acterizations allow us to consider all trials in the same feature
space. A linear regression model trained on a random half of
the setups yielded weight coefficients for the source and target
features that successfully predicted the transfer effectiveness
of setups in the test set (Figure 6). The slope was found to
be statistically significant with a p-value of 0.01. The most
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Figure 5: Transferability graphs illustrating the most successful source-target pairs. Each graph includes a directed edge from g1 to g2 ()
the transfer effectiveness (defined above) for g2 reusing g1 is greater than (a) 0.5, and (b) 1.0, respectively.

game min(g) bestt bests avgt avgs

seaquest 160 1510 300 475.0 262.0
space invaders 310 1520 1320 1076.0 1160.0
boxing -12 111 107 98.6 104.1
bowling 30 237 231 219.9 201.9
asterix 650 3030 2150 1989.0 2016.7
freeway 21 13 11 10.7 10.7
pong -21 42 42 21.8 20.3
breakout 0 51 37 25.4 31.3

Table 3: For both transfer (t) and scratch (s) runs, average fitness
and best fitness of GReusOM-ESP.

significant features were vertical movement and long-term
planning in the source domain, with respective coefficients
of 0.73 and 0.89. The ability to use the game features to pre-
dict transfer effectiveness can be used to inform source selec-
tion. It is also encouraging that the effectiveness of transfer
with GReuseOM-ESP correlates with a high-level intuition
of inter-game dynamics.

5 Discussion
Our results show that GReuseOM-ESP, an evolutionary al-
gorithm for general transfer of neural network structure, can
improve learning in both boolean logic and Atari game play-
ing by reusing previously developed knowledge. However,
we find that the improvement in learning performance in the
target domain depends heavily on the source network. Some
source-target pairs do not consistently outperform training
from scratch, indicating negative transfer from that source.
This highlights the importance of source selection in transfer
learning.

Specifically with the Atari game playing domain, we ob-
serve an issue of source knowledge quality. Some of the
source networks that were trained from scratch do relatively
well on games whereas others do not. One problem is that the
measure of knowledge in source networks is ill-defined. As

Figure 6: Feature-based linear prediction versus actual transfer ef-
fectiveness on out-of-sample setups

alluded to in [Taylor et al., 2007], there could be an optimal
point in a source’s training at which to transfer knowledge to
a target, after which the source network has encoded knowl-
edge too specific to its own task, which does not generalize as
well to other tasks, and makes useful knowledge difficult to
extract. Future analysis will investigate topological regular-
ities of source networks and transfer connections, to further
address what and how knowledge is successfully reused.

Another future area of work will involve increasing the
flexibility in the combined architecture by 1) relaxing the re-
quirement for all transfer connections to be input-to-hidden
and output-to-output, and 2) allowing deeper architectures
for the source and target networks. This will promote reuse
of subnetworks of varying depth and flexible positioning of
modules. However, as networks become large and plentiful,
maintaining full connectivity between layers will become in-
tractable, and enforcing sparsity will be necessary.

Having shown that our algorithm works with certain target-
source pairs, a next step will involve pooling multiple can-
didate sources and testing GReuseOM-ESP’s ability to ex-
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ploit the most useful ones. GReuseOM-ESP extends naturally
to learning transfer connections for multiple sources simul-
taneously. By starting with limited connectivity and adding
connections to sources that show promise (while removing
connections from ones that are not helping), adaptive multi-
source selection may be integrated into the evolutionary pro-
cess. Methods for adapting this connectivity online have yet
to be developed.

Although our initial experiments only scratched the sur-
face, they are encouraging in that they show general trans-
fer of neural structure is possible and useful. They have also
helped us characterize the conditions under which transfer
may be useful. It will be interesting to investigate whether
the same principles extend to other general video game play-
ing domains, such as [Perez et al., 2015; Schaul, 2013]. This
should help us better understand how subsymbolic knowledge
can be recycled indefinitely across diverse domains.

6 Conclusion
We consider a framework for general transfer learning
using neural networks. This approach minimizes a priori
assumptions of task relatedness and enables a flexible
approach to adaptive learning across many domains. In
both the Atari 2600 and N-bit parity domains, we show
that a specific implementation, GReuseOM-ESP is able
to successfully boost learning by reusing neural structure
across disparate tasks. The success of transfer is shown
to correlate with intuitive notions of task dynamics and
complexity. Our results indicate that general neural reuse – a
staple of biological systems – can effectively assist agents in
increasingly complex environments.
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