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Abstract

Dementia is a common and debilitating condition that typically
gives rise to increasing language impairment. There is a need
to understand the nature of this impairment further so that ther-
apies may be developed, particularly in the case of bilinguals.
This paper extends BiLex, an existing computational model of
bilingual lexical access, to simulate language decline in de-
mentia. Six lesion types are evaluated for their ability to re-
produce the pattern of decline in the semantic variant primary
progressive aphasia (svPPA) subtype of dementia. Semantic
memory lesions reproduce this pattern of decline best in mono-
linguals, and further suggest patterns that are likely to be found
in longitudinal data from bilingual dementia patients in the fu-
ture.
Keywords: personalized medicine; bilingualism; computa-
tional modeling; neural networks

Introduction
Dementia affects 55 million people worldwide, and ap-
proximately 10 million new cases are diagnosed each year
(World Health Organization, 2021). Although there are ther-
apies and medications that can slow its progression, there is
not yet a known cure, nor any way to reverse the resulting
decline. Most dementia patients experience increasing diffi-
culties with language, which is often one of the most distress-
ing symptoms because of the resulting loss of connection to
others. Therapies that can slow the progression of these lan-
guage difficulties are thus extremely beneficial for preserving
quality of life in dementia patients.

An important but sometimes overlooked aspect of language
behavior is that more than half the world’s population speaks
at least two languages (Grosjean, 2021). In the United States,
census data indicates that bilingualism is increasing, and this
may reflect a worldwide pattern (Grosjean, 2021). For in-
dividuals with language disorders who speak more than one
language, determining the most effective treatment is more
complex than in monolinguals because there are interactions
between languages that affect the outcome of treatment. For
example, treatment in one language may or may not im-
prove ability in the individual’s other language(s), and the ef-
fect may not be symmetrical nor consistent between different
bilingual patients (Kiran, Sandberg, Gray, Ascenso, & Kester,
2013). There is thus an increasing need for therapies that can
preserve language ability in bilinguals with dementia; it may
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also be possible to develop more effective therapies that take
advantage of the patient’s ability to speak multiple languages.

Obtaining sufficient data to guide this process is a major
challenge, for three reasons. First, dementia patients, as well
as their families and caregivers, face substantial additional
burdens on their time due to the demands of living with de-
mentia and caring for an affected person, which leaves little
time for study participation. Second, bilinguals vary widely
in terms of their proficiency in each language, and it is nec-
essary to recruit study participants across the entire range.
Third, data collection is extremely time-consuming. The pro-
cess of testing to get a single data point can take hours, and
in order to understand the nature of decline, data needs to be
acquired at several points in time, with enough time in be-
tween so that meaningful decline may be observed. These
requirements limit the amount of data that can be acquired,
which in turn limits the rate at which potential treatments can
be developed and evaluated.

A possible solution is to employ computational simula-
tions. Computational models can be built based on current
understanding of relevant neuroscience and psychology, and
constrained with data on available human subjects. They can
then be fit to new human subjects, making it possible to pre-
dict how various treatments may affect the decline.

As an instantiation of this approach, this paper presents
a computational model of lexical access and semantic com-
prehension that can be applied to Spanish-English bilingual
dementia patients. The model is an extension of BiLex,
an existing computational model of bilingual lexical access
(Peñaloza, Grasemann, Dekhtyar, Miikkulainen, & Kiran,
2019). While BiLex is a neural network model, it is differ-
ent from deep learning models that require millions of pa-
rameters and training examples to construct. Instead it is a
constrained model, incorporating principles from the neuro-
science and language literature such as multiple maps and
connections between them (Kroll & Stewart, 1994). These
principles establish biases that make it possible to construct
accurate models with training data from only a small number
of subjects. BiLex was calibrated with data from 28 healthy
Spanish-English bilinguals and five monolinguals, and shown
to accurately simulate naming abilities across the full range of
bilingual profiles (Peñaloza et al., 2019). In this paper, BiLex
is extended with several possible pathologies, and shown able
to account for the specific characteristics of two individual
dementia patients.
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These BiLex models provide value in two ways. First, they
can be immediately useful in planning for care of individual
patients. Knowing the level of communication possible in
each language over time allows making better-informed de-
cisions about living arrangements and degree of support re-
quired. Second, they can help accelerate scientific progress
by allowing initial experimentation with new therapies in
simulation. Scarce patient resources can then be spent on
evaluating therapies that have already been found promising
in computational studies. Thus, the work in this paper paves
the way for better understanding and treatment of an impor-
tant segment of dementia patients in the future.

Assessing Dementia
All types of dementia can give rise to language deficits. The
nature and severity of these deficits vary between subtypes of
dementia, as well as between individual patients. Some types
of dementia, such as semantic variant primary progressive
aphasia (svPPA), lead to deficits in semantic processing as
well as severe word-finding difficulties. Other types, such as
mild cognitive impairment (MCI), leave semantic processing
intact and cause much milder difficulties with word-finding
(Cummings, 2020).

One commonly used test of word-finding ability is the
Boston Naming Test (BNT), which consists of 60 line draw-
ings of objects which the subject is asked to name (Roth,
2011). This set of objects includes high-frequency and low-
frequency items, leading to a range of difficulty. Shorter
forms of the BNT exist, typically consisting of 15 or 30 items,
where the full range of difficulty is still represented.

Semantic memory is commonly assessed with the Pyra-
mids and Palm Trees test picture version (PAPT) (Howard
& Patterson, 1992). In this test, subjects are shown one pic-
ture as a stimulus, and then asked to choose one of two other
pictures based on relatedness. The example after which the
test is named is a picture of a pyramid as the stimulus, and
the subject is asked to choose between a picture of a palm
tree and a picture of a fir tree. The full version of this test
includes 52 items, but shorter versions (with e.g. 26 items)
are sometimes used. Note that no words are involved in this
assessment, enabling it to test semantic knowledge without
requiring word-finding.

These two tests together indicate to what extent a patient’s
language difficulties stem from underlying semantic difficul-
ties versus word-finding. Our model relies on these tests as a
measure of a subject’s naming and semantic abilities.

BiLex Model
BiLex is a computational model of the mental lexicon in bilin-
guals, inspired by the Revised Hierarchical Model of Kroll
and Stewart (1994). It can predict naming performance accu-
rately in healthy bilinguals given an individual’s history of
exposure to the two languages (Peñaloza et al., 2019). It
can also be lesioned to match an individual’s characteristic
language deficits following a stroke, then used to accurately
predict individualized treatment outcomes that would result
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Figure 1: The BiLex model. The model consists of three
SOMs: one for the semantic representations of words shared
across languages, and two for the phonetic representations of
words in each language. The model can be fit to the language
history of individual patients, lesioned to model naming im-
pairment in aphasia and dementia, and trained further to eval-
uate possible treatment options.

from post-stroke language therapy in each of a patient’s lan-
guages (Grasemann, Peñaloza, Dekhtyar, Miikkulainen, &
Kiran, 2021). A clinical trial is currently underway to evalu-
ate BiLex as a tool for clinicians to select the most effective
treatment language in Spanish-English bilingual stroke pa-
tients; if successful, it would be the first computational model
employed in this role. Given these prior studies, BiLex pro-
vides a promising foundation on which to build an individu-
alized model of language decline in bilinguals with dementia.

Consistent with Kroll and Stewart’s model, BiLex consists
of three interconnected maps: a phonetic map for each lan-
guage and a shared map that represents semantic concepts.
Each map is implemented as a self-organizing map (SOM;
Kohonen, 1982), and all three maps are fully connected via
bidirectional associative connections, as depicted in Figure 1.

BiLex is trained with a corpus of words in English and their
direct translations to Spanish (638 concrete nouns in the sim-
ulations in this paper). Words are represented by two types of
vectors in BiLex. One is an encoding of the semantic features
of a word, where each position in the vector represents a se-
mantic feature (e.g. “can fly”). The other type is an encoding
of the phonetic features of the word. Since BiLex is a bilin-
gual model, each word has three representations: one seman-
tic vector and two phonetic vectors (Spanish and English).

BiLex training follows the normal SOM training process
(Kohonen, 1982). All three maps are trained simultane-
ously, and the associative connections between the maps are
strengthened via Hebbian learning, so that connections be-
tween simultaneously activated SOM nodes are strengthened
proportionally to the activation of the two nodes they con-
nect. Training occurs throughout the entire simulated life-
time, and the training hyperparameters vary to capture the
way language learning capacity declines with age in humans:
the learning rate and neighborhood size are decreased over
time, and random noise is added to the associative connec-
tions throughout the entire simulated lifetime to capture lan-



guage attrition effects. The exact values and rate of change
for these hyperparameters were fit previously to healthy hu-
man data using evolutionary optimization (Peñaloza et al.,
2019; Grasemann, Miikkulainen, Peñaloza, Dekhtyar, & Ki-
ran, 2019).

After training, BiLex’s performance is evaluated using
simulated BNT tests in both English and Spanish, as well as
a simulated PAPT test, similarly to testing of patients.

Extending BiLex to Model Dementia

Dementia and stroke both give rise to language deficits result-
ing from neurological damage, but the nature of the damage
and the resulting deficits differ significantly. Whereas stroke
typically consists of a single event in which brain tissue is
damaged, dementia is progressive in nature. Dementia also
arises from several different brain abnormalities which give
rise to different patterns of language decline. Therefore, it is
useful to evaluate several different ways of lesioning BiLex
progressively, so that it is possible to model as many of the
different subtypes of dementia as possible.

Lesion Types

This study evaluates six possible lesion types targeting the
functional areas in BiLex analogous to the brain areas and
functions that are affected by dementia pathology. These
include the semantic map (analogous to semantic memory;
Lesions 1, 2, and 3), propagation between the semantic and
phonetic maps (analogous to connections between semantic
memory and phonetic memory; Lesions 4 and 6), and the in-
put to the semantic map (analogous to the combined sensory
and cognitive inputs; Lesion 5).

Candidate Lesion 1: Random Deletion of Neurons in the
Semantic Map Nodes in the semantic map are randomly
chosen to be marked as lesioned, meaning that that they will
no longer activate in response to the input nor propagate any
activation to phonetic maps. Once a node is marked as le-
sioned, it will remain that way for the rest of the simulated
lifetime. Beginning at the simulated age of onset, progres-
sively more nodes are added to the lesioned set over time.

Candidate Lesion 2: Focused Deletion of Neurons in the
Semantic Map This lesion is identical to Lesion 1, except
that the next positions to be lesioned are chosen so that they
are adjacent to other lesioned nodes. The position of the first
node to be lesioned is chosen at random.

Candidate Lesion 3: Blurring of Semantic Features in
the Semantic Map At each time step during the lesioning
phase, the weight of each feature of each node in the seman-
tic map is changed to be slightly closer to the average of its
neighboring nodes’ weights for that feature. This lesion is
implemented using a pooling operation over neighbors, as is
commonly used in some layers of a convolutional neural net-
work. It is intended to simulate the “conceptual averaging”
observed in semantic dementia patients.

Candidate Lesion 4: Deletion of Associative Connections
Connections from the semantic map to the two phonetic maps
are removed at random. Once a connection is removed, it no
longer propagates activation from the semantic map to the
phonetic map, and it can no longer be strengthened via the
Hebbian learning process.

Candidate Lesion 5: Deletion of Features from the Se-
mantic Input Vector Positions in the incoming semantic
vector, each of which corresponds to a semantic feature, are
chosen at random to be added to the set of lesioned fea-
tures. These positions in the input vector will be ignored sub-
sequently when choosing the semantic map node that most
closely matches the input vector.

Candidate Lesion 6: Abnormal Spread of Activation in
the Semantic Map During normal operation of BiLex, the
neighborhood size in all three maps decreases gradually as the
simulated age increases. This process is commonly used with
SOMs to allow the maps to organize at a global scale early in
the training process and then to refine their organization at a
local scale later according to more fine-grained similarities in
the data. In BiLex, the neighborhood size also effectively de-
termines how many neurons adjacent to the winning neuron in
a given map can propagate their activation to the other maps
via the associative connections. In this lesion, semantic map
activation and subsequent propagation to the phonetic maps is
perturbed by progressively increasing the neighborhood size
in the semantic map during the decline. Thus, progressively
more nodes in the semantic map are allowed to propagate ac-
tivation to the phonetic maps than in a healthy model, causing
the activation in the phonetic maps to become less focused.

Lesion Progression

When applying any of these candidate lesions to BiLex, two
choices must be made: when to start the lesioning process,
and the rate at which it should progress. Because the age of
onset and the rate of progression of dementia can both vary
among patients, even within the same subtype of dementia,
these are choices that must be tailored to each individual pa-
tient.

The choice of when to start the lesioning process is in-
formed by the timing of the patient’s diagnosis and when the
symptoms were first noticed. However, this information does
not provide an exact answer, as neurological damage occurs
for some time before it is possible to formally diagnose de-
mentia. To deduce the appropriate rate of progression, some
indication of the individual patient’s rate of decline is needed.
The most direct way is to obtain BNT and PAPT scores at two
timepoints with enough time in between so that the scores can
decline meaningfully.

Given such information, it is possible to find the best le-
sioning start time S and rate of progression P using the fol-
lowing search process: for each combination of S and P
within a range of plausible values, a BiLex model is trained
according to the language exposure history and with lesion-



ing starting at S and progressing at rate P. Each combination
of S and P is evaluated for fit to the patient’s actual scores
(according to the sum of the squared distances) and the S and
P with the best average fit (over the available time points and
languages) is found.

Predicting Bilingual Dementia
The above process can be repeated with all six lesion types,
evaluating how well each one of them explains the patterns of
decline in the two languages. It will then be possible to iden-
tify the lesions that provide the best way to model dementia
computationally. However, longitudinal BNT and PAPT data
do not yet exist on bilingual dementia patients. Therefore, a
two-step process is employed in this paper:

First, the six lesion types are implemented in models of
healthy bilinguals, and their effect on the decline of the two
languages characterized. Second, these lesions are evaluated
based on how well they predict the decline in monolingual
dementia patients, for which data does exist. Thus, the sec-
ond experiment allows identifying the best lesions; the first
experiment shows what the predicted patterns for that lesion
are. These experiments are described in the next two sections.

Experiment 1: Qualitative Comparison of
Candidate Lesions

Language exposure history data from two healthy bilingual
controls whose data were collected as part of the initial tun-
ing of the BiLex model (Peñaloza et al., 2019) were used to
generate predictions of the shape of decline. These two sub-
jects were chosen because they represent different degrees of
bilingualism: one is significantly more proficient in Spanish
than English at the age when lesioning begins, and the other
has approximately equal abilities in both languages.

For each combination of candidate lesion and human sub-
ject, 20 BiLex models were trained with the subject’s lan-
guage exposure history data and lesioned beginning 11 sim-
ulated years before the last data point. The rate of progres-
sion P was chosen so that full decline happens in 10 simu-
lated years: At that point, no unlesioned neurons remain in
the semantic map (Lesions 1 and 2), the weights are fully
averaged (Lesion 3), no unlesioned associative connections
remain (Lesion 4), no unlesioned positions in the semantic
input vector remain (Lesion 5), and the propagation neigh-
borhood contains the entire semantic map (Lesion 6).

As can be seen in Figure 2, the six candidate lesions result
in different patterns of decline. Lesions 4 and 6 do not affect
PAPT score at all; Lesion 3 affects PAPT score before any
decline in BNT scores is observable; and Lesions 1, 2, and
5 affect PAPT scores and BNT scores simultaneously, but
with varying differences in impairment between them. The
shape of the decline in BNT scores also varies between candi-
date lesions, with some showing steeper decline early, some
showing steeper decline later, and others showing approxi-
mately linear decline throughout the entire lesioning period.
The second experiment then identifies which ones of these
patterns are the best match with those observed in patients.

Experiment 2: Matching Candidate Lesions
with Patient Data

Models with different lesions were fit to the data of two
English-speaking monolingual svPPA patients included in the
study of Flurie et al. (2020). For each patient, four time-
points of naming accuracy scores were reported, spanning a
period of 20-23 months, with six to eight months between
timepoints. PAPT scores exist for each patient at the first and
last timepoint. The age of each patient and the time since
onset were also included.

These data were collected as part of a study investigating
the effectiveness of a maintenance-based treatment intended
to preserve naming ability on the specific words included in
the treatment. Some of the words included in the treatment
were also words that appear in the BNT. To avoid this con-
found, the model’s naming accuracy was measured only on
words that were not included in the treatment.

Both patients have significantly impaired naming and
PAPT scores, with naming more severely affected, and both
naming and PAPT scores continue to decline over the course
of the disease in both cases. This pattern immediately allows
elimination of Lesions 4 and 6, neither of which causes PAPT
scores to decline (Figure 2). Similarly, Lesion 3 can be elim-
inated because its PAPT score first declines steeply and then
plateaus (and its naming scores do not fall to the patients’
level until its PAPT scores have plateaued at a significantly
lower level than those of both patients).

For each of the remaining three candidate lesions, an ex-
haustive search was run over a range of values for P and S,
subject to the constraint that S cannot be later than the pa-
tient’s reported age of onset. For each combination of lesion
type, P, and S, 40 BiLex models were trained with language
exposure history set to 100% English and 0% Spanish, with
lesioning starting at simulated age S and progressing at rate P.

Figure 3 shows the best fits of S and P for each of the three
candidate lesions. Lesions 1 and 2 provide the best match
with the patient data. They both involve progressive dele-
tion of semantic map neurons, thus suggesting a likely source
of pathology in svPPA. Patterns for these lesions in Figure 2
then predict how this type of dementia is likely to progress
in bilingual patients. More specifically, more balanced bilin-
guals are predicted to decline similarly to the top two plots on
the right column, and bilinguals with one dominant language
similarly to the top two plots on the left.

Discussion and Future Work
Two of the six candidate lesions fit the data of monolin-
gual svPPA patients well. The patterns of decline in the two
languages shown in Figure 2 then constitute predictions on
svPPA decline on bilingual patients, and similar predictions
can be generated for future patients with different language
histories. As longitudinal data become available for bilingual
svPPA patients, these predictions can be tested. Accurate pre-
dictions then build confidence that BiLex can be used to eval-
uate treatment options for individual patients in the future.



Figure 2: Decline observed with the six candidate lesions in a Spanish-dominant model (left) and a balanced bilingual model
(right). Black lines represent PAPT scores, red lines represent Spanish BNT scores, and blue lines represent English BNT
scores. Candidate lesions are arranged according to their indices, with Lesion 1 at the top of the figure and Lesion 6 at the
bottom. The lesions result in different patterns of decline; Lesions 1 and 2 provide the best match with existing monolingual
data (Figure 3), predicting that the pattern in the top two rows will be observed in bilingual longitudinal data in the future.



Figure 3: Best fits of candidate lesions to data from two svPPA patients in the study of Flurie et al. (2020). Fits for Patient
A are on the left and fits for Patient B on the right. Lesions 1, 2, and 5 are shown since they are the only ones that result in
a qualitative match to patient data. Black dots represent actual patient PAPT scores, and blue dots represent actual patient
naming scores. Similarly, black lines show the model’s PAPT scores, and blue lines show the model’s English naming scores.
The dashed vertical line is the patient’s reported age of onset. Lesions 1 and 2 provide the best match with data, suggesting
that these lesions can be used to predict the patterns of bilingual decline as well, as shown in Figure 2.

It is likely that other subtypes of dementia will be best
modeled with different types of lesions. For instance,
MCI patients characteristically are not impaired on PAPT
(Taler & Phillips, 2008). Therefore, Lesions 4 and 6 may
be appropriate for modeling MCI, despite not being good
choices for modeling svPPA. In future work, we plan to fit
the current candidate lesions to the pattern of decline seen
in MCI. This process can be repeated for other subtypes of
dementia as longitudinal data become available for them.

Another possibility for the future is to combine some of
the lesion types to achieve a more precise fit to patient data.
For example, Lesion 4 (which does not affect PAPT scores)
can be combined with either Lesion 1 or Lesion 2 (both of
which lead to PAPT scores slightly below the patients’ ac-
tual scores in Experiment 2) to achieve a closer fit to the data
from the two monolingual patients reported in Experiment 2.
However, allowing lesion types to be combined weakens the
constrained nature of the model and increases the danger of
overfitting the small amount of patient data available to us at
this time. As more data become available, it will be possible
to investigate how lesion types can be combined to generalize
across all the available data.

In the current model, lesions were assumed to progress at
a steady rate from the time they begin until the end of the
simulated lifetime. Variable rates may be more accurate, es-
pecially rates that either increase or decrease steadily (un-
constrained variation would raise the risk of overfitting). If
longitudinal data with more than a few time points becomes
available, this possibility can be evaluated as well.

Conclusion
While it is important to be able to take into account bilin-
gualism in understanding and treating dementia, it is difficult
to obtain comprehensive enough data to cover the variety of
patients. Computational modeling can be a crucial tool, but
the models have to be principled in order to be sufficiently
constrained with the available data. BiLex, a self-organizing
map model with associative connections, is based on neuro-
science and psychological principles that make it possible to
fit it to individual patients. With longitudinal data on mono-
lingual patients and healthy data on bilinguals, it is possible to
identify the candidate lesions that predict the likely patterns
of decline in bilingual dementia. Once verified with bilin-
gual dementia data, these models can serve as a foundation
for identifying the most effective treatments in the future.
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