
Architecture of a Cyberphysical Avatar

Song Han∗, Aloysius K. Mok∗, Jianyong Meng∗, Yi-Hung Wei∗, Pei-Chi Huang∗, Quan Leng∗

Xiuming Zhu∗, Luis Sentis†, Kwan Suk Kim†, Risto Miikkulainen∗

∗Department of Computer Science, The University of Texas at Austin
{shan, mok, jmeng, yhwei, peggy, qleng, xmzhu, risto}@cs.utexas.edu

†Department of Mechanical Engineering, The University of Texas at Austin
{lsentis@austin.utexas.edu, kskim@utexas.edu}

Abstract— This paper introduces the concept of a cyberphysical
avatar which is defined to be a semi-autonomous robotic system
that adjusts to an unstructured environment and performs physical
tasks subject to critical timing constraints while under human
supervision. Cyberphysical avatar integrates the recent advance
in three technologies: body-compliant control in robotics, neu-
roevolution in machine learning and QoS guarantees in real-time
communication. Body-compliant control is essential for operator
safety since cyberphysical avatars perform cooperative tasks in
close proximity to humans. Neuroevolution technique is essential
for ”programming” cyberphysical avatars inasmuch as they are
to be used by non-experts for a large array of tasks, some
unforeseen, in an unstructured environment. QoS-guaranteed real-
time communication is essential to provide predictable, bounded-
time response in human-avatar interaction. By integrating these
technologies, we have built a prototype cyberphysical avatar
testbed.

I. Introduction

The utility of teleoperated robotic devices in mission-critical
tasks is undisputed. Two examples in recent years are the oil
pipeline spill in the Gulf of Mexico and the search and rescue
operation after the level 9.0 earthquake in Japan. Yet, much
more can be accomplished if the teleoperated devices have more
autonomous capabilities. Indeed, the underwater repair operation
in the Gulf of Mexico was suspended and precious time was
lost in stopping the oil spill when two of the robotic vehicles
collided with each other. In the case of the Japan earthquake,
critical repair operation had to be suspended when radiation
level became too high for human safety. Despite the impressive
progress by the robotics community in recent years, we are still
quite a way from being able to trust fully autonomous robots
to carry out mission-critical and safety-critical operations by
themselves. On the other hand, today’s unintelligent teleoperated
devices cannot be counted on to perform well in physically
difficult and unstructured environments. Short of a gigantic leap
in technology that creates intelligent fully autonomous robots
capable of functioning in an unstructured environment, we pro-
pose to chart a pathway to evolve the capability of teleoperated
robotic devices from primitive mechanical remote-control to
trustable autonomy and more intelligent teleoperation. Rather
than trying to build fully autonomous robots from scratch, we
do it gradually through less and less human teleoperation, all
the while deploying these robots in actual tasks. This is a
new and different approach, and likely to result in practical
applications and advances much sooner, and in more robust and
better adapted autonomous robots in the end.

A short version of this paper appeared in International Workshop on Real-
Time and Distributed Computing in Emerging Applications [1].

Fig. 1: Vision of cyberphysical avatar technology: The goal of
cyberphysical avatar technology is to increase robot autonomy in
unstructured environments. At the simplest level, robots are teleop-
erated with simple interaction and coordination capabilities, while by
using a combination of models, skill learning, and communication-
based switching between teleoperation and autonomous modes, they
could lead to complex yet practical robot behaviors for applications in
disaster, health, and security scenarios.

This paper describes such a pathway by introducing the
concept of a ”cyberphysical avatar”. We define a cyberphysical
avatar to be a semi-autonomous robotic system that adjusts to an
unstructured environment and performs physical tasks subject
to critical timing constraints while under human supervision.
A cyberphysical avatar is semi-autonomous in that there are
actions it must take without human intervention because of the
relatively short timing constraints, e.g., the control loop that
maintains a fast walking gait. On the other hand, a cyberphysical
avatar should not be programmed to deal with only a fixed set
of scenarios because we cannot foresee all the contingencies
in all operational environments, e.g., a building on fire in a
rescue mission. An effective interface between the cyberphysical
avatar and its human supervisor is essential for success, and this
requires the cyberphysical avatar to be designed for predictable
and timely response. As the cyberphysical avatar gains more
physical skills, it can be trusted to perform more subtasks on
its own.

There are many technical challenges in realizing the cyber-
physical avatar concept. These challenges can be categorized
into three topics below:
• Dynamics and control of humanoid avatars: The cy-

berphysical avatar must be able to perform the physical
tasks in an unstructured and uncertain environment. In this

In Proceedings of the ACM/IEEE Fourth International Conference on

Cyber-Physical Systems (ICCPS-2013) 2013.

area, we need to develop a methodology for modeling
the dynamic behavior of physical avatars interacting with
unstructured environments and controllers that can adapt
to the changing physical conditions. We need to develop
software foundations that encapsulate the physical skills
supporting the full range of teleoperated to autonomous
behaviors.

• Evolutionary learning of skills under environment
and performance constraints: Evolutionary approach is
needed to learn the continuous control parameters of the
skills, as well as their discrete composition. The cyber-
physical avatar must be able to acquire skills so that it
can perform time-critical tasks autonomously. The level
of autonomy and the criticality of the timing constraints
that can be satisfied for practical physical tasks requires
advances in learning theory and engineering validation.
Moreover, learning strategies need to be applied to learn
the tradeoff between teleoperation and autonomy.

• Supporting reliable, real-time avatar-human communi-
cation: The cyberphysical avatar must be able to operate
untethered and maintain timely and reliably communication
with the controller that is hierarchically implemented with
the human supervisor at the top of the control hierarchy.
The combination of real-time and robust communication in
a wireless environment where communication paths may
be disrupted requires advance in both algorithm design and
engineering validation. We need a switching policy between
teleoperated and autonomous behaviors that is based on
communication quality as the primary metric for making
switching decisions.

The rest of this paper will describe the system architecture of
the cyberphysical avatar and some performance results of our
implementation using the Dreamer/Meka humanoid robot. The
cyberphysical avatar is fully operational at this point; but we
envision much more new research and new ideas to be pursued
in order to perfect the collaboration between the cyberphysical
avatar and human supervisor.

II. Control of wheeled humanoid avatars in unstructured
environments

The cyberphysical avatar must be able to maneuver in ir-
regular terrains while performing accurate physical whole-body
compliant interactions with the environment and with human
operators. To attain these capabilities, skill modeling and control
in unstructured environments must be carefully designed. In this
section, we first describe the dynamic model of the wheeled base
of our Dreamer/Meka humanoid robot under varying contact
conditions. We then present our model of the whole-body com-
pliant skill of the robot and the hierarchical control structures
that is used to handle task conflicts during the execution of the
behavior.

A. Dynamic model of the wheeled base

In unstructured and uncertain environments, wheel-based
avatars will often be in a situation of marginal contact, i.e. not
all the wheels are in contact. As such, the dynamics of the
robot, need to represent the contact state of the robot, its effect
on center of mass balance and the conservation of angular and
linear momentum due to marginally-stable contact conditions.
This characteristics become even more critical when the robot

engages into manipulation tasks while maintaining marginal
contacts.

We derive the model of the robot under varying contacts by
leveraging the generalized contact consistent Jacobian developed
in [2] which specifies that for a given contact state Cm the
generalized Jacobian of an operational task (e.g. one of the
robot’s hands) is equal to

J∗task,Cm
, Jtask UNCm , (1)

where Jtask is the Jacobian of the hand Cartesian point with
respect to an inertial frame outside of the mobile base, U
describes the underactuated (i.e. uncontrollable directions) of the
base due to the contact state, NCm describes the current contact
state (i.e. how many wheels are in contact), and the operator
(.) indicates a dynamically consistent generalized inverse of the
argument. Therefore the control of the operational task (e.g.
the control of the robot’s hand) while taking into account the
mobility of the base and the uncertain contact state is equal to

ΓCm = J ∗Ttask,Cm
Ftask (2)

where Ftask is the force or impedance command to control
the hand, J∗task,Cm

is the whole-body task Jacobian including the
base contact state (i.e. how many wheels are in stable contact),
and ΓCm is the whole-body command of torques sent to the base
and upper humanoid torso motors.

B. Skill definition and hierarchical control structure

In whole-body compliant control (WBC), a task is defined
via a mapping between the robot’s N-dimensional joint con-
figuration and some M-dimensional space which describes an
objective that the controller should achieve. The skill is defined
as a juxtaposition of multiple operational tasks to help translate
between high-level goals (such as provided by planning algo-
rithms) and the operational tasks. In our environment, a skill
is a human readable file (e.g. YAML) describing the points or
coordinates of the robot that are to be simultaneously controlled
to accomplish a behavior, plus their respective control policies,
and plus their hierarchical priorities in the execution pipeline. In
this work, however, as to be elaborated in Section III, the control
policies of the skill will be learned through machine learning
approaches.

Having now many operational task processes to simulta-
neously optimize, as defined in the skill, either as force or
impedance processes, we propose to use the following control
structure in Eq. 3. The intuition behind this control structure is
to instantiate several tasks, each of which tries to drive the robot
toward some state. The task contributions are accumulated using
null space projections to ensure that lower-priority tasks do not
interfere with higher levels. The motion is thus determined by
each task in combination with their priorities. This structuring
provides two orthogonal ways of changing robot behavior, either
by influencing the tasks (e.g. changing their gains or goals) or by
rearranging the hierarchy (e.g. inserting tasks or locally inverting
their ordering).

ΓCm =
∑

k

(
J ∗Tk|prec(k),Cm

Fk

)
+ N ∗Tt,Cm

Γposture + J ∗Ti|l,Cm
Fint, (3)

In Eq. 3, Fk is the task space force or impedance command
for the k-th operational task, J∗k|prec(k),Cm

is the prioritized contact

Fig. 2: Whole-body compliant control with prioritized tasks. Left hand side of figure shows the Dreamer crosses a terrain with a slope while
responding to human interaction. And right hand side of the figure shows closed loop dynamic controller producing joint torque outputs based
on Center of mass, hand position and posture with prioritized Jacobians.

consistent Jacobian of the task, Γposture is the command to
optimize the posture behavior, Fint is the command to optimize
the internal forces between the arms and the mobile base, and
J∗i|l,Cm

is the Jacobian of the internal forces. This structure is
a derivation of our previous work on whole-body compliant
control found in [3].

In the control structure, the low-level tasks describing the skill
are aggregated using a hierarchy, where more relevant tasks,
such as those who ensure the fulfillment of physical constraints
appear first, while those dealing with the operational behavior
appear with less priority. Fig. 2 gives an example where the
skill is composed of three tasks. The first task is maintaining
coordinates of center of mass(CoM) to prevent the robot from
falling down on irregular terrain. Second task is compliant hand
position which enables the robot to respond compliantly to
human interaction. The posture task here is utilizing remaining
degree of freedom to stabilize self-motion and converge to a
human-like posture. Lower-priority tasks operate in the null
space of all higher priority tasks. So when the terrain changes
the CoM task will temporarily override non-critical tasks in
order to prevent falling. The task becomes unfeasible when the
current higher priority tasks use all the dynamic redundancy.
This event can be easily monitored and used to stop the behavior
and communicate the problem to a high level planner.

Because our control structures use effectively the dynamic and
contact model of the physical avatar in its environment, they
are able to optimize all task processes simultaneously within
the contact stance, thus achieving precise tracking of forces and
trajectories. Moreover, posture behavior, which is specified as
an optimization criterion instead of a trajectory is also optimized
within the residual manifolds left over by the priority tasks.

III. Skill acquisition by machine learning

Although much of the operation of the robot can be based on
carefully designed control algorithms, there are two issues where
machine learning methods can prove crucial: (1) conversion of
human operator behaviors to robot behaviors, and (2) optimiza-
tion of robot behaviors. In both of these cases, it is possible
to come up with measures of how good the behaviors are,
but the optimal behaviors are not known. Therefore, machine
learning methods based on exploration need to be used. In this

section, a particularly powerful such a method, neuroevolution,
is described first, followed by its application to train the learning
skills of the grasper on the Dreamer humanoid robot to pick up
objects with any shape.

A. Learning robust nonlinear control through neuroevolution

In the neuroevolution approach, evolutionary optimization
method such as a genetic algorithm is used to construct the
structure and the connection weights of a neural network so
that the network performs as well as possible in a given task [4].
The neural network can be recurrent, implementing a sequence
memory, and thereby making it possible to use the approach
to discover sequential behaviors such as robot navigation, arm
control, and grasping.

Neuroevolution differs from other machine learning methods
in two important ways. First, most such methods are supervised,
which means that they learn behavior that approximates a
given set of examples [5]. The examples need to be carefully
constructed to represent correct, or optimal performance—the
learning system will then learn a function that interpolates
between them smoothly. For instance, in grasping, a number
of grasping situations (configuration of the hand, shape and
position of the object) need to be created together with the
optimal grasping behavior. In general, it is difficult to come
up with such examples because optimal behavior is often not
known; also, it is difficult to cover all possible situations, making
the behavior incomplete. In contrast, neuroevolution learning is
based on exploration and reinforcement: a population of neural
networks is evolved through crossover and mutation, directed
only by how well each network performs. It is thus possible to
discover successful behaviors that human designers would find
difficult to construct, and behaviors that are more general.

Second, other methods that are designed to learn under sparse
reinforcement, such as Q-learning, or value function learning
in general, assume that the current state of the system is
completely known [6]. If objects are occluded, or the situation is
changing, it is difficult for them to anticipate what will happen
(because the observed values of actions cannot be associated
with the correct state). In contrast, the neural networks employed
in neuroevolution can disambiguate the state based on their
sequence memory. Previous sensor values are part of the state

representation, making it possible to understand how the world
is changing, and how to respond to it optimally. Such an ability
is particularly useful in domains such as grasping that are highly
dynamic and where sensors are limited.

The neuroevolution approach can thus be used as a training
mechanism for the Dreamer robot as well. In particular, it is well
suited for learning skills such as picking up an object. In the
following, we will first describe the physics of the grasper on
the Dreamer/Meka humanoid robot and then present the training
details. Training is done following the NEAT [7] approach. A
detailed description of the NEAT approach can be found in our
technical report [8].

B. Physics of the grasper

We simulate the Meka hand using GraspIt! [9], an open-
source grasping simulation environment developed at Columbia
University. GraspIt! provides mechanisms for simulating grav-
ity, interactions between rigid objects, physical modeling, and
joint movement for the specific purpose of developing efficient
robotic grasps. Robotic components in particular are modeled as
a series of degrees of freedom specifying parameters such as de-
fault rotational velocity, maximum torque, and relative position
and rotation ranges. Each degree of freedom is connected to
a kinematic chain and associated with a visual model in the
three-dimensional environment. These individual components
are combined to create an entire robotic apparatus.

The Meka hand in particular is defined by one degree of
freedom for each knuckle in each finger, as well as degrees of
freedom for the thumb’s rotator. The mechanics of this model
will be modified in our studies in order to account for two
phenomena. First, we wish to control the wrist, which isn’t
modeled explicitly by default. We will therefore add a wrist
component to the Meka model supplied by GraspIt!. Second,
most of the degrees of freedom in the Meka hand are not
actuated. Each finger consists of three joints, which are all
connected by a single rubber tendon. When the finger curls,
all three knuckles curl in unison. We will therefore adjust
the torques that we feed to the simulator to account for this
interdependent joint behavior. A set of torques given to a single
finger will conform with one another such that they are all
equivalent to torques initiated by a stretching of the rubber
tendon, which we see in the real robot.

C. Training the grasper

To properly grasp with the Meka hand, first, we have to
design an input and output layers of our target neural network,
as well as a fitness function to allow a gradual climb toward an
efficient grasp. Because our Meka unit is primarily controlled
using the Whole-Body Control Framework, the network is only
responsible to directly manipulate orientation and position of
the wrist. Thus, we designate an output node for each of these
degrees of freedom.

Each neural network generated from NEAT receives several
input data that illustrate our current state of the robot in an
environment. Designing the input layer is less trivial. It is
necessary to encode the entire state of the grasp in some way,
which includes positions of the grasped object, as well as the
object’s shape. To reduce dependency on the shape of the
grasped object, we encode the object’s state by simply taking
a depth map from the robot’s Kinect sensor and assigning each
depth data a unique input node in the neural network. In this

way, the network is able to associate state of an arbitrary object
in an arbitrary environment with a grasping strategy namely
appropriate position and angle of the robot hand.The output of
each network through NEAT is to predict where an object is
and what is the best direction to grasp the object in the form of
three-dimension hand positions and orientation.

The final stage of our design is to construct an adequate fitness
function. The fitness function of a network n with respect to a
corresponding object o is computed as the reciprocal of mean
square error M, the summation of distance between the center
of robot’s palm and a desired object, and also combined with
the grasp quality metrics provided by GraspIt!. Let Pi be the
predicted position of hand for grasping by the network, where
i ∈ x, y, z coordination. Let Oi be a coordinate of the selected
object after mouse click, where i is captured from the Kinect
sensor inputs to get x, y, z coordination. Let q be a quality
value after the execution of a single grasp, which is normalized
into the range [0, 1] by GraspIt!. Thus, the fitness function f is
defined as follows:

f (n) =
β

M + α
+ γq =

β∑
i∈x,y,z(Pi − Oi)2 + α

+ γq (4)

, where α, β and γ are constants.
The first term of the equation is measuring the distance

between the hand and the object and the second term is
proportional to the grasp quality. During the initial phases of
learning, the coordinate is arbitrarily chosen, so the robot hand
will try to grasp at arbitrary position where it can not even touch
the object. As a result, the second term of the fitness function
will be almost always zero in the early generations. So in this
stage, the first term is used to differentiate the fitness of the
neural networks, which will train the networks to get closer to
the target object. After some generations, when the hand can
grasp the object the second term will start be effective and rank
the results according to the grasp quality. And parameters α, β
and γ is used to adjust the relative affect of these two terms.
So with this fitness function, the neural networks will first learn
to get close to the object and then learn to grasp the object in
right way.

D. Simulation results

To explore the robot behavior in the real world, we adopt
dynamic environment in the simulation. Because GraspIt! only
has limited support for the hand model of Meka robot and only
provides restricted hand movement, we have improved the hand
model and movement functionality to make it work with our
simulation environment. Fig. 3 illustrates the overview of our
simulation setup. The Kinect sensor is simulated within GraspIt!
simulator which is used to provide a set of depth data as inputs
for the neural networks. This array of depth data together with a
two-dimensional coordinate representing mouse click from users
are fed to the input layer of the NEAT. The output of the NEAT
consists of hand position and hand orientation where they are
sent back to the simulator for manipulating the robotic hand and
evaluating the quality of grasp. The structure and the weights
of the neural networks are automatically created with NEAT [7]
through several generations.

The evolved neural networks are utilized to retain hand
position and orientation, and we use these data to manipulate
Meka hand in simulation environment for performing grasping
and evaluating the quality of grasping. In this experiment, the

Fig. 3: Representation of the designed grasp controller network.

0 10 20 30 40 50 60 70 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s

V
al

ue

Generation

Fig. 4: The average maximum fitness function of the neural network
found at each generation in a GraspIt! environment.

input data contains 20 × 20 depth array nodes, 2 coordinate
nodes. The coordinate node here denotes mouse click input
from the user indicating the target object. So the remote human
controller can click on Kinect Sensor video stream to identify the
target object of the grasping. In our experiment, this coordinate
is created by randomly picking a point of the target object.
These input data are directly connected to the output to form
the first generation of neural networks, which are then evolved
through mutation and crossover. We set the population size as
128, refine three parameters α, β and γ of the fitness function
Eq. 4, and choose number of generations as 80. The fitness
value is a function of the distance between the Meka hand and a
target object plus the quality of grasping. In the fitness function,
larger fitness value implies better grasping quality. As Fig. 4
shown, in the starting networks, the first average fitness is low
because they are composed of the input data directly connected
to the outputs with random weights. As the neural networks
evolve through generations, performing adaptive weight and
structure adjustment, the fitness value increases. After around 30
generations, it reaches around 0.8 which means the Meka hand
can grasp the object more accurately with the proper position
and orientation. We also observe that after 30 generations, the
fitness value oscillates around maximum value. It is possible
that we do not perfectly characterize our fitness function, and
more fine tune shall be made to further improve the result.

E. Transitioning from simulated to physical controller

The training method described in Section III-C is primarily
done in simulation. However, transferring controllers evolved in
simulation to the physical robot is challenging [10], [11]. The
main reason is that it is difficult to simulate physical properties
such as friction and sensor and actuator characteristics with high

enough fidelity to reproduce the simulated behaviors on real
robots. In order to address this issue, we choose the following
methods to improve the results of transfer to the real robot.

First, if the simulator is accurate enough, controllers that
transfer well can be created simply by evolving them to be
robust. That is, if sensor values and actuator responses frequently
vary in simulation, the resulting controllers will be robust against
small discrepancies between simulation and reality as well [12],
[13]. Such uncertainties can be introduced into the simulation
simply as noise, and solutions evolve that do not depend on
accurate values and outcomes, thus transferring well.

If there are more systematic flaws in the simulation, behaviors
may evolve that exploit them, and therefore transfer poorly.
Such behaviors can be discouraged by incorporating transfer into
evolution explicitly, by utilizing a multi-objective evolutionary
algorithm that optimizes both a task-dependent controller fitness
as well as a measure of how well the controller transfers from
simulation to reality [14]. In any given generation, this method
chooses at most one controller based on behavioral diversity to
be evaluated on the real robot, requiring only a small number
of hardware evaluations.

Another approach is to perform experiments on the real robot
in order to improve the simulator, typically in one of two ways:
(1) Experiments are performed on the real robot before running
evolution to collect samples of the real world by recording
sensor activations [15]. When controllers are evaluated later
during evolution, these samples are utilized to set the simulated
sensor activations accurately. (2) Experiments are performed on
the real robot during evolution to co-evolve the simulator and
the controller, making an initially crude simulation more and
more accurate [16].

We will adopt the system-level simplex architecture [17]
to provide safety guarantees during the transitioning. In this
architecture, we use a simple and verified safety controller to
ensure the stability and safety of the robot operations. This
conservative safety control core is then complemented by a high-
performance complex controller, which will be used whenever
possible, but switch to the safety controller when system in-
tegrity is jeopardized.

IV. Supporting Remote, Reliable and Real-Time (R3)
Avatar-Human Communication

A key component of cyberphysical avatar technology is the
remote, reliable and real-time avatar-human communication.
Because of the mobility requirement of avatars to work in
unstructured environments as is often the case in disaster re-
covery, wireless connection has to be established at the edge
of the communication infrastructure. Owing to limited wireless
communication range (e.g. around 200m in Wi-Fi and 40m in
802.15.4-based [18] low-power wireless standards), a multi-hop
wireless network in mesh topology is required to cover a large
area, and more importantly, can overcome transmission blocking
by objects such as metal doors in industrial facilities where
avatars operate.

We envision the use of a combination of multi-hop wireless
mesh networks and the existing Internet to support real-time
communication between the avatars and human supervisor.
However, the need for reliable and real-time communication
imposes several significant challenges. Specifically, the cur-
rent Internet architecture cannot guarantee any end-to-end QoS
requirement for time-critical control flows and most existing

Fig. 5: The R3 communication infrastructure for cyberphysical avatars

wireless standards and routing protocols are not designed with
real-time delay constraint in mind and as a result cannot provide
any bound on end-to-end delay. Moreover, the inherent lossy
wireless medium, the constantly fluctuating traffic volumes
and channel conditions, together with complicated interference
relationship have made it challenging to achieve high end-
to-end reliability, which is essential for remote avatar-human
communication.

A cyberphysical avatar typically contains two types of data
flows. There is one or multiple data flows destinated to re-
mote human supervisor containing physical information of the
environment in which the avatar operates. These data flows
include image flows captured by the cameras installed either
on the avatar or in the operation environment, and real-time
position/direction information of the avatar. There is also a
control flow originated from the human operator to supervise
the robot to execute designated tasks. Figure 5 presents an
overview of our remote, reliable and real-time (R3) communi-
cation infrastructure. We use Wi-Fi connection to transmit data
flows because they require larger bandwidth but have soft real-
time requirements on packet delivery. On the other hand, the
time-critical control flow is transmitted on WirelessHART [19]
real-time mesh network which is set up at the edge of the
communication infrastructure to guarantee the end-to-end delay
in the avatar-human communication. OpenFlow [20] network is
deployed to enhance the existing Internet architecture to provide
guaranteed QoS support. Our communication infrastructure has
the following three key components.

A. Wi-Fi connection for supporting data flows

We use Wi-Fi connection at the edge of the communication
infrastructure to help forward data flows to the remote human
supervisor. In our current setting, the data flows are image
streams captured by the Kinect sensor installed on the avatar,
and the IP camera installed in its operation environment. Since
the control PC on the avatar is battery-powered and its compu-
tation workload is intensive, the Kinect sensor is attached to a
separated Laptop (Kinect Laptop). The Kinect Laptop and the
avatar control PC are connected through Ethernet.

We utilize open source software library OpenKinect [21] to
control the Kinect sensor. Both the color images and depth
images received from the Kinect sensor will be synchronized
with the position and orientation information received from the
avatar control PC and sent to the remote supervisor. The remote
control application receives the images and renders them on
the user interface. It allows the operator to monitor the physical

Fig. 6: OpenFlow testbed overview

environment the avatar is operating in and supervise it to execute
designated tasks.

B. OpenFlow network for providing QoS guarantees

Cyberphysical avatar technology is a highly interactive appli-
cation that requires strict timing constraint on the control flows
and guaranteed bandwidth for the data flows. Building such
communication infrastructure is challenging because the current
Internet architecture has no facility to guarantee minimum
bandwidth and end-to-end latency for network flows. To address
this problem, we enhance the existing Internet architecture by
deploying OpenFlow [20] network to connect the remote human
supervisor and the avatar operation environment. OpenFlow is an
open standard that provide QoS support and enables researchers
to run experimental protocols in campus networks. To deploy an
OpenFlow network, it requires two key components, the inter-
connected OpenFlow switches and the OpenFlow controller.

The hardware of OpenFlow switch is similar to current
Ethernet switch, where we enhance the switch to support
OpenFlow protocol. OpenFlow protocol provides an interface
for remote controller to program the data plane of switches,
which determine the corresponding action of network flows.
These actions could be forwarding a packet to specific port,
dropping out a packet, or putting it to a queue. By manipulating
the performed actions on the switches, we can provide QoS
guarantee to network flows. OpenFlow controller is usually a
PC, where we can specify high level QoS requirement, then it
can interpret it into low level actions and program these actions
through OpenFlow protocol into OpenFlow switches.

To achieve end-to-end latency requirement for the control
flow, we enhance the OpenFlow switch to support Virtual Clock
Server [22]. By using Virtual Clock Server, we can bound the
queuing time that a packet goes through a switch. By bounding
the delay of each switch, we can calculate and provide the end-
to-end delay bound [23] from human supervisor to the avatar.

In order to demonstrate the minimum bandwidth guarantee
provided by OpenFlow switches, we setup a testbed as shown in
Fig. 6. In the testbed, we deploy two switches, switch-1 (Pronto
3290) and switch-2 (Pronto 3295), and we enhance them with
Indigo [24] open source OpenFlow firmware implementation.
An OpenFlow controller PC running FloodLight OpenFlow
controller [25] is used to configure the OpenFlow switches. We
connect three PCs/Laptops to switch-1 to serve as clients, and
three other PCs/Laptops are connected to switch-2 serving as
servers. We run iperf to generate TCP flows with maximum

0 10 20 30 40 50 60 70 80 90 100 110 120

100

200

300

400

500

600

700

800

900

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Time (Second)

 Flow-1
 Flow-2
 Flow-3

(a) Throughput of three flows without rate guarantee

0 10 20 30 40 50 60 70 80 90 100 110 120

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Time (Second)

 Flow-1
 Flow-2
 Flow-3

(b) Throughput of three flows with rate guarantee

Fig. 7: Demonstration of bandwidth guarantee in OpenFlow switch

rate. Each computer in this experiment is equipped with gi-
gabit Ethernet network interface, and the maximum achievable
throughput of each flow is around 900Mbps if no other traffic
is present in this network.

We configure three flows in the testbed and evaluate their
throughput with and without rate guarantee. In the baseline
experiment without rate guarantee, we first start flow-1 at time
0, and we run flow-1 for 120 seconds. Flow-2 is started at time
30, and its duration is 60 seconds. Flow-3 starts at time 60
and runs for 30 seconds. In the second experiment with rate
guarantee, we reserve 500Mbps bandwidth for flow-1 by setting
a minimum rate guarantee queue at the egress port of switch-1.
We then run the same setting as the baseline experiment.

Fig. 7 summarizes our experiment results. Fig. 7a shows
the throughput of the three flows in the baseline experiment.
Without rate guarantee, all three flows compete the link capacity
of the connection link between switch-1 and switch-2. When
three flows are present at the same time (from time 60 to 90),
the throughput of each flow is around 300Mbps. In the second
experiment as shown in Fig. 7b, because we enable the minimum
rate guarantee queue for flow-1, the throughput of flow-1 can
be maintained around 500Mbps, even though in present of the
other two flows.

802.15.4 PHY

Data Link Layer

6LoWPAN

Transport Layer UDP ICMP

Application Layer

Socket API

CoAP Application Layer

Enhanced NWK Layer

Fig. 8: Design of the WirelessHART real-time communication stack

C. WirelessHART mesh for supporting real-time control flow

The control flow from the remote human supervisor to the
robot control PC is time-critical and has hard deadline on its
delivery. Due to the pervasive Wi-Fi signals and the backoff
mechanism used in 802.11, the jitter in Wi-Fi transmission is
large and unpredictable. This is a fatal disadvantage of Wi-Fi to
be adopted for providing reliable and real-time communication
for the control data flow in cyberphysical avatars.

For this reason, in the R3 communication infrastructure, we
use WirelessHART [26] real-time mesh network to transmit
the control data flow to the avatar control PC. The control
flow is transmitted from the remote control application to
the WirelessHART Gateway through the deployed OpenFlow
network and then further relayed to the avatar control PC on
WirelessHART mesh.

Figure 8 presents the architecture of the WirelessHART real-
time communication stack. At the bottom, it adopts IEEE
802.15.4-2006 [18] as the physical layer for energy-saving pur-
pose. On top of that, WirelessHART defines a TDMA-based data
link layer. It provides strict 10 ms timeslot and network-wide
time synchronization to support deterministic packet delivery.
Retransmission, channel hopping and channel blacklisting mech-
anisms are also applied to improve the communication reliabil-
ity. The network layer supports self-organizing and self-healing
mesh networking techniques to further improve the network
performance in noisy and harsh environments. To improve the
service scalability and make the application development easier,
we further enhance the communication stack with a 6LoW-
PAN adaptation layer, a UDP transportation layer and a CoAP
application layer. This enhancement makes the WirelessHART
device IP-enabled and the Gateway only needs to take the role
of the router and forward the IP packets to the avatar control
PC. Only the remote control application and the application
running on avatar control PC need to understand the specific
application protocol. The Gateway can remain unchanged when
new services are established between the supervisor and the
robot.

To demonstrate the benefit of WirelessHART real-time pro-
tocol, we conduct a set of experiments to compare the packets
inter-arrival time (IAT) between Wi-Fi and WirelessHART. Both
the Wi-Fi and WirelessHART network are deployed in the
graduate student office at UT ACES 5th floor. We configure both
the Wi-Fi and WirelessHART devices to periodically publish
data every 20ms in the media access control (MAC) layer, and
we calculate the IAT on the receiver side. For each network, we
run the experiment independently for 60 seconds and our results

0 500 1000 1500 2000 2500 3000
0

10000

20000

30000

40000

50000

60000
 Wi-Fi
 WirelessHART

In
te

r-
ar

riv
al

 T
im

e
(m

ic
ro

se
co

nd
s)

Number of Packets

(a) Without present of jammer

0 500 1000 1500 2000 2500 3000
0

10000

20000

30000

40000

50000

60000 Wi-Fi
 WirelessHART

In
te

r-
ar

riv
al

 T
im

e
(m

ic
ro

se
co

nd
)

Number of Packets

(b) In present of jammer

Fig. 9: Inter-arrival time comparison between Wi-Fi and Wire-
lessHART in office environment

are summarized in Fig. 9.
Fig. 9a shows the IAT comparison in regular office environ-

ment. Because Wi-Fi utilizes CSMA-CA and random backoff
mechanisms to coordinate channel access, it cannot transmit
packets in a deterministic way, thus has high variation at the
packet transmission time. WirelessHART on the other hand
adopts TDMA mechanism and only transmits packets at fixed
time points periodically. We observed from Fig. 9a that most
WirelessHART packets are transmitted exactly every 20ms and
only 1.7% of WirelessHART packets are retransmitted once due
to interference from other Wi-Fi traffic, and have doubled IAT.

Fig. 9b shows the behavior of WirelessHART and Wi-Fi net-
works in present of intended interference. The jamming signal is
created by deploying another Wi-Fi network, where we disable
the carrier sense and random back mechanisms of its sender
and use iperf to create maximum Wi-Fi traffic. Because of the
interference from the jamming signal, we observed higher IAT
variation in the Wi-Fi network. In WirelessHART network, we
enable the dynamic channel blacklisting mechanism to mask out
ill-conditioned channel. By hopping to less interference channel,
most of WirelessHART packets are successfully transmitted
without retransmission.

Fig. 10: An overview of the system setup in UT Human Centered
Robotics Lab. (1) The Dreamer robot. (2) Robot control PC. (3) Kinect
Laptop. (4) Kinect sensor. (5) WirelessHART receiver. (6) IP camera.
(7) WirelessHART Gateway. (8) WirelessHART Access Point.

V. Designing and building a cyberphysical avatar

We have completed a prototype of the cyberphysical avatar to
verify the effectiveness of the proposed architecture. The remote
control application is installed in UT ACES building and the
robotic system is located in UT Human Centered Robotics Lab.
OpenFlow switches are being deployed in UT campus network
to provide bandwidth guarantee for reliable and real-time avatar-
human communication. In this section, we will present the
details of the system design and integration. A video demo
of remote supervision on the avatar to execute ”touch” and
”incremental move” commands is available online [27].

A. System Integration in Human Centered Robotics Lab

Figure 10 presents an overview of the system setup in the
Human Centered Robotics Lab. The control flow originated from
the remote operator goes through the OpenFlow campus network
and is transmitted to the Dreamer robot through the local real-
time wireless communication subsystem. The Kinect camera and
IP camera installed in the lab keep track of the robot’s motion
and its operation environment by sending image flows back to
the remote supervisor. Based on these image flows, the remote
human operator can supervise the robot to execute designated
tasks by sending appropriate commands. Our system has the
following three key components.

The Dreamer/Meka Hardware: The main hardware tool that
we use for this study is the Dreamer/Meka mobile dexterous
humanoid robot. This robot includes the T2 Meka torso, the
A2 Series Elastic Meka arm, the H2 tendon driven Meka hand,
the Dreamer/Meka head co-developed by Meka and UT Austin,
and the torque-controlled holonomic UT Austin’s Tricky base.
The actuators for the base and the upper body, except for the
head, contain torque/force sensors that enable Elmo amplifiers
to implement current or torque feedback. An Ethercat serial
bus communicates with sensors and motor amplifiers from a
single computer system. A PC running Ubuntu Linux with the
RTAI Realtime Kernel runs the models and control infrastructure
described in Section II. The Tricky holonomic base contains
torque sensors as well as the inertial measurement unit (IMU)

3DM-GX3-25 from MicroStrain. It achieves holonomic motion
and force capabilities by utilizing Omni wheels located in a
equilateral triangular fashion. Interested readers are referred
to [28] for more details about this robot.

Kinect/IP Cameras: We have two cameras installed in the
Human Centered Robotics Lab. An IP camera is installed at
the right upper corner to give an overview of the operation en-
vironment of the Dreamer robot; A Kinect camera is installed in
front of the robot to capture the image and depth information of
the target. As we mentioned in Section IV, due to the limitation
on the power and the computation capability, the Kinect camera
is installed on a separate Laptop (Kinect Laptop in Figure 10).
The Kinect Laptop is connected to the avatar controller through
Ethernet. It synchronizes image streams (including the image
and depth information) captured from the Kinect camera and
the position/orientation information of the robot together and
sends to the remote control application.

Real-time wireless communication subsystem: We set up a
WirelessHART network for achieving real-time wireless com-
munication at the edge of the communication infrastructure. The
communication subsystem includes a WirelessHART Gateway
which is connected to the UT campus network, and a Wire-
lessHART receiver which is connected to the avatar control PC
to provide real-time communication. More intermediate devices
can be deployed to form a mesh to cover larger area if necessary.
The WirelessHART receiver exchanges control commands and
robot status with the avatar control PC through shared memory.
The robot status information is transmitted back to the remote
operator on the WirelessHART real-time wireless network in the
reversed direction. To provide deterministic communication, we
establish a superframe with the size of 10 timeslots and create
5 pairs of transmit/receive links between the WirelessHART
receiver and Gateway, so the frequency of the control flow
can be up to 50Hz, which is sufficient for high-level control
command transmission. As the ongoing work, we are enhancing
the 802.11 standard with real-time and reliable features. We
target at building a general wireless platform to support a wide
range of wireless sensing and control applications by achieving
a good balance among sampling rate, reliability, and energy
efficiency.

B. Remote Control Application

Figure 11 shows a screen capture of the remote control
application we developed for supervising the Dreamer robot.
The details of the interface messages between the control
application and the Kinect Laptop/Dreamer robot can be found
in the technical report [8].

The specific skill we are training the Dreamer robot is to
move itself close to a desk and pick up a designated target
under supervision. As shown in Fig. 11, in the remote control
UI, the color images and the depth images from Kinect camera
and the images from the IP camera are displayed in the three
image panels at the top of the UI. The human supervisor can
choose a target in the color image from Kinect panel by clicking
on it. After clicking on the target, a copy of the color image at
this moment is copied to the image of target object panel. A red
dot is added on the image showing the position the user clicked.
The coordinate of this position is also displayed in the mouse
clicked position label. Using the position of the click on the
image and the depth data at that point, we calculate the physical

Fig. 11: A screen capture of the remote control application. (1)(2)
Color and depth image from Kinect sensor. (3) Image from IP camera.
(4) Image snapshot when user presses the color image.

Fig. 12: Video snapshots for Touch and Incremental Move commands.

coordinate of the target with respect to the Kinect. Once get the
physical coordinate of the target, user can issue commands to the
Dreamer robot to execute specific tasks. In our current testbed,
three commands have been implemented already: Default, Touch
and Incremental Move. The Default command sets the robot
back to its default gesture, while the Touch command asks
the robot to touch the target the user clicked on. Fig. 12 is
a sequence of video snapshots that demonstrate how the robot
reacts when a Touch command is received. In the first video
frame, the robot hand started from the default position. The
robot moved to the designated position as shown in frame 2 and
3. It is possible that the Kinect sensor has small measurement
error due to its hardware limitation. In that case, we relied on
visual feedback, and used Incremental Move command to direct
the robot to touch the target object as shown in frame 4. The
grasp skill to lift up the target is still under training and the
Grasp command will be added to the remote control application
as soon as the training is finished.

VI. Conclusion and Future works

This paper introduces the concept of a cyberphysical avatar
which is defined to be a semi-autonomous robotic system that
adjusts to an unstructured environment and performs physical
tasks subject to critical timing constraints while under human

supervision. A cyberphysical avatar is the bridge technology
that will help transition dumb teleoperated robotic devices to
autonomous robots capable of functioning in unstructured envi-
ronments. What makes the cyberphysical avatar possible today
is the convergence of three recent technologies: body-compliant
control in robotics, neuroevolution in machine learning and
QoS guarantee in real-time communication. By integrating these
technologies, we have built a prototype cyberphysical avatar
testbed. Building this physical testbed is an essential first step for
exploring the cyberphysical avatar concept because the physical
and computational complexities involved necessarily require less
than exact modeling and the use of mathematical approximations
to simulate physical processes; the viability of the cyberphysical
avatar must be validated by a physical testbed. This paper
describes the implementation of the major components of the
cyberphysical avatar and some of their performance results. The
cyberphysical avatar is fully operational and is being trained to
acquire some basic physical skills by the NEAT [7] algorithm
invented by one of the coauthors.

The availability of the cyberphysical avatar testbed opens up
new avenues for future research that arise from the interaction
between robotics, machine learning and real-time system design.
We mention below a couple of the issues to be explored.
• Models for real-time resource allocation and scheduling

must be explored that are neither hard nor soft real-time in
that a cyberphysical avatar is best characterized as a hierar-
chical, ”contract-driven” real-time system. For example, the
avatar may be commanded by the human supervisor to trade
off walking speed against visual processing accuracy of its
environment; in an uncluttered environment, the avatar can
move faster without worrying about being tripped over by
an unexpected obstacle. This will involve trading off the
quality of the sensor data for faster response time in the
gait-maintenance control loop, while keeping the related
mode change overhead low. This calls for a proactive
approach in providing performance guarantees.

• New concepts of compositionality are needed to make
it easier to compose physical components into higher-
level semantic units. For example, in compliant control,
postures are objectives that need to optimize a performance
objective in the null space of tasks (which are coordinates
to track a position or force trajectory). Since attaining
desired postures requires non-trivial computation in real
time, fast tests for checking feasibility will be very useful
for helping the human supervisor to make decisions. This
might be possible if we can lift the level of abstraction
of the compliance problem to a mixed logical-numerical
constraint satisfaction formulation and exploit techniques
in run-time verification.

• Experimental work is required to qualify and quantify the
efficacy of human supervision of the cyberphysical avatar
in performing specific tasks. For example, what level of
supervision and at what computational and communication
costs can a cyberphysical avatar and human supervisor team
put together, say, an Ikea furniture set?
These and other issues will require many months if not
years of work in the future.

References

[1] Song Han, Aloysius K. Mok, Jianyong Meng, Yi-Hung Wei, Pei-Chi
Huang, Xiuming Zhu, Luis Sentis, Kwan Suk Kim, Risto Miikkulainen,

and Jacob Menashe, “Architecture of a cyberphysical avatar,” to appear
in International Workshop on Real-Time and Distributed Computing in
Emerging Applications (REACTION 2012).

[2] L. Sentis, Motion Planning for Humanoid robots, chapter Compliant
Control of Whole-Body Multi-Contact Behaviors in Humanoid Robots,
pp. 29–63, Springer Berlin Heidelberg, 2010.

[3] L. Sentis, J. Park, and O. Khatib, “Compliant control of multi-contact
and center of mass behaviors in humanoid robots,” IEEE Transactions on
Robotics, vol. 26, no. 3, pp. 483–501, June 2010.

[4] Risto Miikkulainen, “Neuroevolution,” in Encyclopedia of Machine
Learning. 2010.

[5] Simon S. Haykin, Neural Networks and Learning Machines, Prentice
Hall, Upper Saddle River, New Jersey, third edition, 2009.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, 1998.

[7] Kenneth O. Stanley and Risto Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary Computation, vol. 10, no.
2, pp. 99–127, 2002.

[8] Song Han, Aloysius K. Mok, Jianyong Meng, Yi-Hung Wei, Xium-
ing Zhu, Luis Sentis, Kwan Suk Kim, Risto Miikkulainen, and Jacob
Menashe, “Architecture of a cyberphysical avatar,” UTCS Technical Report
#TR-12-12. http://apps.cs.utexas.edu/tech_reports/reports/
tr/TR-2082.pdf .

[9] Matei Ciocarlie, Columbia University, ,” http://sourceforge.net/
projects/graspit/files/releases/.

[10] Nick Jakobi, Minimal Simulations for Evolutionary Robotics, Ph.D. thesis,
School of Cognitive and Computing Sciences, University of Sussex, 1998.

[11] Hod Lipson, Josh Bongard, Victor Zykov, and Evan Malone, “Evolutionary
robotics for legged machines: From simulation to physical reality,” in
Proceedings of the 9th International Conference on Intelligent Autonomous
Systems., 2006, pp. 11–18.

[12] Faustino Gomez and Risto Miikkulainen, “Transfer of neuroevolved
controllers in unstable domains,” in Proceedings of the Genetic and
Evolutionary Computation Conference, Berlin, 2004, Springer.

[13] Vinod Valsalam, Utilizing Symmetry in Evolutionary Design, Ph.D. thesis,
Department of Computer Sciences, The University of Texas at Austin,
2010, Technical Report AI-10-04.

[14] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux, “Cross-
ing the reality gap in evolutionary robotics by promoting transferable
controllers,” in Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation, New York, NY, USA, 2010, pp. 119–126,
ACM.

[15] Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi, “Evolving mobile
robots in simulated and real environments,” Artificial Life, vol. 2, pp. 417–
434, 1995.

[16] Juan Cristóbal Zagal and Javier Ruiz-Del-Solar, “Combining simulation
and reality in evolutionary robotics,” Journal of Intelligent and Robotic
Systems, vol. 50, pp. 19–39, 2007.

[17] S. Bak, D.K. Chivukula, O. Adekunle, Mu Sun, M. Caccamo, and Lui Sha,
“The system-level simplex architecture for improved real-time embedded
system safety,” in Real-Time and Embedded Technology and Applications
Symposium, 2009. RTAS 2009. 15th IEEE, april 2009, pp. 99 –107.

[18] “IEEE 802.15.4 WPAN Task Group,” www.ieee802.org/15/pub/TG4.
html.

[19] “WirelessHART,” http://www.hartcomm.org/protocol/wihart/
wireless_technology.html.

[20] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner, “Open-
flow: enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., 2008.

[21] “Openkinect,” www.openkinect.org.
[22] Geoffrey G. Xie and Simon S. Lam, “Delay guarantee of virtual clock

server,” IEEE/ACM Trans. Netw., 1995.
[23] Pawan Goyal, Simon Lam, and Harrick Vin, “Determining end-to-end

delay bounds in heterogeneous networks,” Network and Operating Systems
Support for Digital Audio and Video Springer Berlin / Heidelberg, vol.
1018, pp. 273–284, 1995.

[24] “Indigo open source firmware for openflow swiches,” http://www.
openflowhub.org/display/Indigo/.

[25] “Floodlight openflow controller,” http://floodlight.openflowhub.
org/.

[26] Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon,
and Wally Pratt, “WirelessHART: Applying wireless technology in real-
time industrial process control,” in Proc. of IEEE RTAS, 2008.

[27] “Avatar Demo,” http://www.cs.utexas.edu/˜shan/avatar.html.
[28] F. Lima J.G. Petersen K.S. Kim L. Sentis P.D. Wong, S. Gupta, “Building

an educational whole-body compliant mobile humanoid robot for safe
rough-terrain physical hri,” in IEEE International Conference on Intel-
ligent Robots and Systems (under submission), 2012.

