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Abstract
Increasingly large volumes of time series medical data need
to be exploited to learn better models that forecast events
such as acute hypotensive episodes (AHE). The models have
to be transparent so clinicians can decipher and validate
them with their expert knowledge. The nature of learning a
forecasting model requires historical ”lag” data but in most
cases the extent of the relevant lag is open to question and
the cost, with respect to model learning, increases with its
duration. We present a novel decision list-based machine
learning approach for forecasting physiological time series by
classification. It is scalable, finds lag duration automatically
and the rules it learns are interpretable and compact in terms
of their representation of lagged variables.

1 Introduction

In the medical domain, data mining is more and more
focused on longitudinal studies where the ability to
track patient medical data over time is of primary
interest. A large number of patient records are time
series based. Some are at the granularity of high
resolution physiological waveforms recorded in the ICU
or via the remote monitoring systems. Others include
lab work done at (ir)regular intervals time. In addition,
data warehouses containing electronic health records or
insurance claims store the data from multiple visits of
patients at di↵erent points in time.

With the availability of these rich and heteroge-
neous time series data sources about patients’ medi-
cal history, a number of studies have focused on build-
ing predictive models. Consider two recent examples.
The first study focused on generating an alert for car-
diac arrest and resuscitation using demographic infor-
mation, signals from history, vitals and laboratory mea-
surements [8]. The authors call the event code blue and
aim to predict the possibility of its occurrence for a pa-
tient in the next 1h, 2h, 3h, 4h. The second study aims
at early detection of diabetes from health claims [4].
From a patient’s claim history they extract approxi-
mately 1054 features to predict onset of diabetes in
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a future time window.
Given a time-series of training exemplars each of

length T (in samples), to build a discriminative model
capable of predicting an event, features are extracted
by splitting the time series into non-overlapping (or
overlapping), segments of size k samples each, up to
a certain point h < T such that there are m = h

k

segments. A number of aggregating functions are
then applied to each of these segments (a.k.a windows)
to generate features for the problem. For example,
consider the two papers we just mentioned. In the
first paper, which predicts code blue, the time series is
divided into three segments starting from the current
time, t, corresponding to t < �3hr, �3hr < t <

�9hr and �9hr < t < �18hr. In each segment, the
authors apply a number of aggregation functions over
the samples from the time series to generate features.
These are minimum, maximum, average and standard
deviation for each vital and lab value. They also
measure the slope of the signals in those segments by
fitting a linear regression. This gives them 327 features.
They then learn a classifier with these features and a
label.

In the second paper, which detects diabetes, the
feature vector for an event at time point t was created
by considering the entire history of the patient up to t

as a segment. First, a class of medications and ICD-9
codes were assembled as possible indicators of looming
diabetes onset. A number of binary valued features were
then extracted from the patients history where a value
1 indicated at least one instance (claim) of the patient
being associated with the ICD-9 code or the class of
medications. A discriminative model was built using
regularized logistic regression.

In these approaches, there are several decisions one
has to make: first, the size of the segments (a.k.a win-
dow size), k, the amount of history h to be used, and
the aggregation functions need to be chosen. The best
values for any of these parameters is not known a pri-
ori. Additionally, since dimensionality of the problem
is = h

k
⇥ nf , where h is the amount of history used, k

the segment size and nf is the number of aggregation
functions, it is often hard to justify use of large history
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Figure 1: Two alternative approaches to learning interpretable models from time series. In the more conventional
approach, left, a time series is divided into segments and three features are extracted from each segment resulting
in a total of 9 features. The learner, a classification algorithm, learns a set of rules that considers these features.
At right the time series itself is passed to the learning engine with a label attached to it. The learning engine
produces a rule list with conditions applied to variables that reference values of the time series in the past.

or small segment size due to its e↵ect in increase in the
dimensionality. Increasing the dimensionality requires
either regularization or feature selection to build robust
discriminative models. Additionally, without regular-
ization or feature selection the models could loose inter-
pretability as well. In this paper we present an alterna-
tive representation for models and rely on the learning
algorithm to identify the amount of history to be used
automatically for every problem. The algorithm is given
the aggregated time series.

The approach evolves interpretable decision lists.
Figure 1 contrasts the two methods side by side, the
entire time series up to T is split into N segments.
3 aggregate functions are applied to extract features
from each segment. In the first approach, left, features
are assembled by collecting the aggregate values for
the m segments. This results in 3m features that
are fed into a standard machine learning algorithm.
In the second approach, right, multiple time series
generated by applying aggregate functions to the entire
N segments are fed into the machine learning algorithm
we describe in this paper. The algorithm generates the
decision list that makes use of the lagged values of the
time series by generating conditions with variables of
the form Xi(t��), where 0  �  N . The algorithm
learns � which we call lags (a.k.a delays) as part of the
model.

The learning methodology is based on a search
and score methodology by referencing a large dataset
through a large scale, distributed algorithm is employed,
EC-Star [6], see Section 2. Important properties of
this system are its ability to find lags automatically
and its scalable distribution which breaks the data

into small packages and scores a decision list on many
asynchronous learners in parallel. We demonstrate
our approach with time-series classification of arterial
blood pressure (ABP), see Section 3. Our particular
area of investigation is “acute hypotensive episodes” [5].
Finally, we conclude with a discussion regarding the
conclusions and future work in Section 4.

2 Learning decision lists with time delays

In this section we present a brief overview of our learning
algorithm called EC-Star, representation of the model
it generates, and the representation of data fed to it.

2.1 Model and data representation A decision
list in EC-Star is similar to a decision list [7], each rule
is a variable length conjunction of conditions with an
associated class prediction, see at the bottom of the
right part of Figure 1. In the evaluation each condition
compares a lagged value or the current value of the
time series to a threshold (decision boundary). The
decision lists in EC-Star have a variable number of rules
and conjunctive clauses in each rule, but are limited by
max decision list size. This representation is di↵erent
from many other classifiers e.g. DecisionTrees, simple
Decision Lists, Support Vector Machines and Logistic
Regression, which requires every time lagged value or
an aggregate to be set as a di↵erent feature.

Furthermore, the EC-Star algorithm requires a spe-
cific layout of the data. The data is assembled as data
packages, where each data package is a classification ex-
ample. Consider two time series x1(t) and x2(t). Within
each data package for each time interval t = a the val-
ues of x1(a) and x2(a) are stored as columns. This is
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shown below in Table 1. If the problem has more time
series additional columns can be incorporated into the
data package. Each data package is associated with a
label l.

The rule is evaluated for each data package and
its error rates, false positive and false negatives are
calculated by accumulating the discrepancy between its
predicted label and the true label for the data package.
Table 1 presents a rule and its prediction for a data
package.

2.2 Learning algorithm To learn a best fit decision
list EC-Star [6] performs an iterative parallel stochas-
tic search over decision lists, sometimes referred to as
“evolutionary search” [1]. The algorithm utilizes a pop-
ulation of decision lists and slightly alters a number of
factors in the decision lists. These are the conditions
used in a rule, the number of conditions in a rule, the
lags in the rule, and number of rules in each of the
decision lists. These changes are made via commonly
known computational procedures crossover and muta-
tion (a.k.a evolutionary operators). In our current ver-
sion of the algorithm, the condition thresholds are preset
prior to the search itself. In each iteration the decision
lists with the top scores are selected and are used as the
seed for next iteration for alteration. This approach re-
lies heavily on being able to evaluate each decision list in
the population on the data set, thus requiring multiple
passes through the data within each iteration. For large
datasets, as in this paper, this is prohibitive to carry out
on a single node. Next we give a brief overview of our
distributed architecture.

2.3 Distributed architecture In EC-Star every-
time a decision list is changed it needs to be re-evaluated
on all the data packages. The EC-Star system uses a
hub-and-spoke architecture for a distributed and asyn-
chronous evaluation of decision lists. The learner coor-
dinator server is the hub, which maintains an archive of
decision lists with di↵erent scores and passes the high
ranking solutions thus far to the local learners.

The local learners have two functions. First, they
receive the best ranking decision lists from the learner
coordinator server and iteratively alter them using the
evolutionary operators. During each iteration they
evaluate the decision lists by uniformly sampling a
subset of EC-Star data packages with replacement, from
a separate data package server. After a certain number
of iterations they pass their best decision lists thus far
to the learner coordinator server.

Second, the learners evaluate the decision lists
they received from the learner coordinator server on
additional EC-Star data packages and update the scores

Rule Set

Data package Server

Learner

Learner Coordinator Server

Learner Learner

Data package

Harvested Rule Set

Test Data Server

Figure 2: EC-Star architecture. learner coordinator
server distributes decision lists to the learners on the
network. The learners request EC-Star data packages
from the data package server. decision lists are har-
vested from the learner coordinator server and evaluated
on out-of-sample test data.

for these decision lists and report it back to the learner
coordinator server.

The learner coordinator server from time to time
updates the ranking of the decision lists based on the
updated scores. Although the comparisons at a learner
during iterative search are noisy due to evaluation on
partial data, it enables EC-Star to handle large vol-
umes of data by using fewer exemplars for training and
removing poor decision lists early. The learner coordi-
nator server emerges with solutions that perform well
across the data as time progresses. This distribution
of evaluation, model generation and comparisons allows
EC-Star to operate on large amounts of data with a pool
of large number of learners.

3 Demonstration- Arterial Blood Pressure
Event Prediction

In this section, we employ the algorithm and its ability
to learn transparent decision lists from the time-series
to acute hypotensive event prediction in the ICU. We
define a time series prediction problem based on lead,
and prediction duration. Consider the mean arterial
pressure signal at time t as x(t) 2 R. The goal is to
predict if the value of the statistic m = mean([x(t +
↵), . . . , x(t+↵+�)]) falls into one of the three intervals:

label =

8
<

:

Low if m  55mmHg

Normal if 55mmHg < m  85mmhg

High if m > 85mmhg

The parameter ↵ is the lead time and � is the
prediction window duration. The history, � is the period
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Nr Condition 1 Condition 2 Action
1 if x1(T ) < 10 and x2(T � 1) > 20 then l = 0
2 if x2(T ) < 10 and x2(T � 3) > 20 then l = 1
3 if x1(T � 1) < 10 then l = 0

T x1(T ) x2(T ) l
0 10 20
1 10 32
2 9 30
3 8 20 0

Table 1: Example of a decision list (top) and a data package (bottom). Demonstration of evaluation of a rule on
a data package. The example shows how the current Time, T = 3 is applied to each rule. Rule nr 1 evaluates
the first clause with x1 at the current time to true (green). The second clause of rule 1, x2 at current time -1,
T � 1 = 2 is also true. Rule nr 1 applies label l = 0 (grey) as the action, which matches the label for T = 3. The
first clause in rule nr 2 compares x2 at T = 3, which is false (red). The second clause compares x2 at T � 3 = 0,
which is again false. Thus, the rule takes no action. The third rule compares x1 at time T � 1 = 2 and is true
and takes the action l = 0, which is correct. When there is more than one prediction the current heuristic for
choosing the action is to take the first prediction, in the same manner as a decision list. Thus, the action from
rule nr 1, l� 0, is predicted, which is correct. If no rules are true then the action will be “Null”, which is always
incorrect.

t� � that decision list can access when defining the lag
for a variable.

We demonstrate the e�cacy of the approach on
roughly 4000 patients ABP waveforms from MIMIC II
v3. In MIMIC Waveform records available are sampled
at 125Hz (125 samples/second) [2] and ABP is recorded
invasively from one of the radial arteries. The raw data
size was roughly 1 Terrabyte. We employ a number
of preprocessing steps before employing our learning
engine.

Step 1: Conditioning For each patient’s waveforms,
we extracted beat onsets and extract data per beat.
We then checked whether the beat is valid or not.
There were roughly 1 billion beats.

Step 2: Extracting MAP time series From the
periodic waveform we then generate an aperiodic
waveform of mean arterial pressure (MAP). Each
sample in this waveform is generated by taking the
mean arterial pressure per beat.

Step 3: Creating aggregated feature time series
We then generate four time series by applying
four aggregate functions to the MAP time series
and choosing an aggregation window of 1 min.
The four aggregate functions used are: (1) Mean
MAP, (2) Std of MAP, (3) Kurtosis of MAP (4)
Skew of MAP. Applying these four aggregate
functions generates four aperiodic time series for
our problem numbered xi(t) where i 2 {1 . . . 4}.

Step 4: Forming the training exemplars We then
form a repository of time series segments that are
at least 120 minutes in duration. We set the event
definition time of 1 minutes i.e. ��↵ = 1 the lead
time of ↵ = 20. The segments are then split into
data packages with 100 lines each.

The labels in the data are imbalanced, the total
number of Low event are just 1.9% of the total number
of events. In total we had 64,123 EC-Star data packages
from 4,414 patient records. 10% of the data is withheld,
the rest is used for training with 10 fold cross validation.
The largest number learners used was 3,000.

For the results presented in this paper the decision
list after 2h of computation using 4 learners is tested on
out-of-sample data. We perform 6 independent runs for
each fold. The quality of the decision list is determined
by the weighted error (WE), L is the set of labels, Ci|j
is cost of predicting label i, i 2 L as j, j 2 L, pi|j is
probability of predicting label i when it is j.

WE =
X

j]inL

X

i2L

Ci|jpi|j(3.1)

The cost is

C =

0

BBBB@

0 1 2

0 0 1 1

1 500 0 1

2 600 1 0

Null 600 1 1

1

CCCCA
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Table 2: Results from out-of-sample test of the best
decision lists for Low against all other labels. Test
data is the best solution from the withheld data. Fold
average is the mean±std over the folds. WE is the
Weighted Error (Eq. 3.1), TPR is the True Positive
Rate (TP/(TP+FN) and FPR is the False Positive
Rate (FP/(FP+TN). TP is True Positive, TN is true
negative, FP is false positive and FN is false negative.

Name WE TPR FPR
Fold average 1.251±0.250 0.906±0.035 0.208±0.091
Withheld 0.895 0.964 0.364

3.1 Results The data is unbalanced with a majority
of events labeled as Normal or High blood pressure and
very, very few as Low blood pressure. We are foremost
interested in for Low (hypotension) against all other
labels.

The results are shown in Table 2. There is a high
variance on the false positive rate among the 10 folds.
Our performance on 10 fold cross validation is similar
to the best decision lists performance on the test data.

While the false positive rate seems high, we note
that four time series used in our experiments were de-
rived from only one attribute per beat - mean arterial
pressure. In our current work we extract multiple at-
tributes per beat like systolic and diastolic pressures,
pulse duration, area under systole. With this addi-
tional information about the patient state, our prelim-
inary studies show that our false positive rates are sig-
nificantly lower.

An advantage of the representation used in EC-Star
is the search over the lags and data size. Let L 2 N be
the max lag, n 2 N be the number of features andm 2 N
be the number of exemplars.

Number of features EC-Star searches among n fea-
tures for each lag, which in total is nL.

Data size The size of the data is constant for EC-Star,
n ⇥ m. For the conventional fixed lag approaches
the smallest data size is n⇥m when no lag is used
and the data size grows linearly with the lag to
nL ⇥ m. In adition, the the conventional fixed
lag approach creates n(L� 1)⇥m redundant data
entries.

Data packaging The data ordering of the data in EC-
Star makes it non-redundant. The minimum data
size of a data package, i.e. input data to the
algorithm, in EC-Star is n⇥L and the conventional
fixed lag has a minimum size of nL⇥ 1.

3.2 Rule set example In Table 3 a decision list is
shown. In summary when reading the rule in Table 3
there are three simple ordered rules: 1) if the current
Mean is below 72.75mmHg (Rule 3) the classification
is Low 2) if Mean is between 73.1 � 121.96mmHg 1
minute back and above 88.94mmHg 4 minutes back
the classification is High. 3) if it is between 72.75 �
97.53mmHg the classification is Normal. Other rules
are based on the less intuitive Std, Kurtosis and Skew.

The decision list has 16 rules and 28 clauses. On
closer inspection we see that there are 7 rules with 1
clause, 6 with 2 clauses and 3 with 3 clauses. The most
used feature in the clauses is Mean, there are 14 clauses
with Mean, 2 with Std, 7 with Kurtosis and 5 with
Skew. This shows that when predicting the future of
MAP the past values of MAP are informative. Similarly,
lag of 0 is the most frequently used: 10 conditions have
delay 0, 2 have delay 1, 3 have delay 3, 5 have delay
4, 2 have delay 5, 1 has lag 7, 8 and 9, and 2 have lag
10. In addition, the labels for the actions are roughly
equal, there are 6 label 0, 5 Normal and 5 Normal. The
importance is the ordering of the rules, and there are
more Low in the earlier rules. There are some rules
which can be pruned by the learning algorithm.

4 Discussion

We have begun to design a methodology to derive inter-
pretable models based on decision lists with variable lags
for time-series classification problems. Furthermore, our
approach is based on a large scale iterative search that
can scalably learn from the increasing volumes of physi-
ological (or other) time-series data and find variable lags
for the transparent models.

We demonstrated the EC-Star approach and its
ability to find variable “lags” in a challenging acute hy-
potensive prediction problem. The approach does not
need transformation of the data. In addition, a data-
driven approach can be useful in interpreting and un-
derstanding the progression of patients health and early
indicators of problems. However, our demonstration is
currently for only physiological time series. There exist
a plethora of time series problems and we are currently
pursuing a number of di↵erent problems to validate our
approach and aid in knowledge discovery from time se-
ries data. These include time series repositories in elec-
tronic health records and insurance claims.
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