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Abstract—Machine learning games such as NERO incorporate
adaptive methods such as neuroevolution as an integral part of
the gameplay by allowing the player to train teams of autonomous
agents for effective behavior in challenging open-ended tasks.
However, rigorously evaluating such human-guided machine
learning methods and the resulting teams of agent policies can
be challenging and is thus rarely done. This paper presents
the results and analysis of a large scale online tournament
between participants who evolved team agent behaviors and
submitted them to be compared with others. An analysis of the
teams submitted for the tournament indicates a complex, non-
transitive fitness landscape, multiple successful strategies and
training approaches, and performance above hand-constructed
and random baselines. The tournament and analysis presented
provide a practical way to study and improve human-guided
machine learning methods and the resulting NPC team behaviors,
potentially leading to better games and better game design tools
in the future.

I. INTRODUCTION

Evolutionary computation has shown promising results in
many areas of machine learning research, particularly for tasks
that are difficult to solve using formal optimization techniques,
such as tasks involving teams of multiple, cooperating agents
or environments with multiple, interacting sources of reward.
Evolutionary approaches have been shown to work well for
such tasks, even in the absence of a formal learning objective.
There are even indications that explicit objectives can actually
impede the ability of an evolutionary algorithm to produce
interesting solutions [1].

Neuroevolution in games presents both exciting opportuni-
ties and interesting challenge [2]. The opportunities include
enabling new kinds of games such as those with evolving
content, those that adapt to their players, and those that
allow the player to train NPCs as part of the game play.
Among challenges is the objective evaluation of strategies and
algorithms in these new complex types of environments.

The NERO video game [3] was originally developed to
demonstrate that neuroevolution could be a powerful tool for
constructing solutions to complex problems. A human player
provides increasingly challenging goals, and a team of NPCs
evolves to meet those goals, eventually excelling in the game.
Complex behavior was demonstrated in a number of different
challenge situations, such as running a maze, approaching
enemy while avoiding fire, and coordinating behavior of small
sub-teams. However, the final behavior of entire teams was
never evaluated relative to each other, so it is not clear how

complex the behaviors could become in this process and what
successful behavior in the game might actually look like. Also,
it is not clear whether there is one simple winning strategy that
just needs to be refined to do well in the game, or whether there
are multiple good approaches; similarly, it is unclear whether
winning requires combining individuals with different skills
into a single team, or perhaps requires on-line adaptation of
team composition or behaviors.

In any case, such evaluations are difficult for two rea-
sons: (1) designing teams takes significant human effort,
and covering much of the design space requires that many
different designers participate; (2) evaluation of the resulting
behaviors takes significant computational effort, and it is not
clear how it can be best spent. This paper solves the first
problem by crowd-sourcing, i.e., running a NERO tournament
online. Students in the 2011 Stanford online AI course1 were
invited to participate. About 85 of them did, many spending
considerable effort to produce good teams, thereby resulting
in a wide selection of approaches and solutions. The second
problem was solved through running a comprehensive round
robin tournament of 24,180 games in parallel in a Condor
cluster, and by analyzing the strategies and performance of
the submitted teams.

The results from the tournament were then used to identify
complex and interesting behaviors that perform well on the
task. Three main approaches were found, and interestingly,
none of them dominated the others. In the final results, there
were many circularities, where team A beats team B, which
beats team C, which then beats team A. We believe that it
is precisely such complex interactions that make the game
interesting and fun to play. Games centered around machine
learning may therefore be a viable game genre in the future
as well as a productive platform for research in human-
guided machine learning and multi-agent systems. Human-
guided neuroevolution is a method to employ in designing
such games, allowing humans to be creative at the high level
while letting machine learning construct the actual behaviors.

II. BACKGROUND

Before discussing the strategies that were evolved, the
NERO game and the OpenNERO software implementing it
is first described, followed by an overview of various methods

1www.ai-class.com
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for evaluating complex behavior in tournaments, and the role
of competitions in advancing the state of the art in AI research.

A. NERO and OpenNERO

NERO [3] was originally developed as an experimental
platform for training teams of agents to accomplish complex
tasks based on the rtNEAT [4] method for evolving artificial
neural networks. The original NERO game was later extended
into an open-source version called OpenNERO,2 which is a
general-purpose platform for AI research and education [5].
OpenNERO includes several different environments and AI
methods in addition to the NERO game environment itself,
but only the NERO environment in OpenNERO was used in
this research.

Each NERO agent on a team has a fixed array of 15 sensors
that detect agents on the same and opposite teams, placement
of nearby walls, distance to a flag (if present), current motion,
damage to opponents, and damage to the agent itself. Agents
control their movement on the field using a two-dimensional
control signal u =< r̈, θ̈ >, where r̈ is the linear acceleration
of the agent in the direction of the agent’s current orientation
θ, and θ̈ is the agent’s angular acceleration.

Training teams in OpenNERO is similar to NERO. The user
can dynamically change the virtual environment by adding,
scaling, rotating or removing walls, moving a flag, and adding
or removing immobile enemy agents. The user can also change
the way the fitness function is computed by adjusting a
(positive or negative) weight on each of the different available
fitness dimensions. The available fitness dimensions are stand
ground (i.e., minimize ṙ), stick together (minimize distance to
the team’s center of mass), approach flag (minimize distance
to a flag on the field, if present), approach enemy (minimize
distance to the closest enemy agent), hit target (successfully
fire at an enemy), and avoid fire (minimize accrued damage).

It is entirely up to each player how to train their team. In
this evaluation we did not record the training process, and so
we only have indirect measures of how the teams were trained,
such as how long (how many removal/replacement cycles) did
the evolution last for, how large the neural networks were,
how similar to each other they were, and what the networks
and the resulting behavior was. These indirect measures do not
seem to correlate significantly with team performance in our
sample. In future such evaluations it would be very interesting
to see the exact training process in each case and to see what
correlates to good team performance.

In a previous evaluation with a smaller sample of under-
graduate students (not presented here) we observed that a
typical training session can last from 10 minutes to several
hours, and can include varied sequences of training actions
such as modifying the environment, modifying the fitness land-
scape, restarting the training process, waiting for a behavior
to emerge, combining results of previous training sessions
(genomes from different teams), evaluating an existing strategy
against another one in battle mode. The creative process of
coming up with a training strategy is an interesting subject of

2opennero.googlecode.com

study in and of itself, however, it is outside of the scope of
this paper.

A team of NERO agents can be serialized to a flat text file.
The text file describes each of the 50 agents on a team. Agents
that use rtNEAT serialize to a description of the genotype
for each agent, and agents that use Q-learning serialize their
(hashed) Q-tables directly to the file.

For the battle task, two teams—each consisting of 50
NERO agents—occupy a continuous, two-dimensional, virtual
playing field of fixed size. The playing field contains one
central obstacle (a wall), four peripheral obstacles (trees), and
four walls around the perimeter to contain all agents in the
same general area.

Each NERO agent starts a battle with 20 hit-points. At each
time slice of the simulation, each agent has the opportunity to
fire a virtual laser at the closest target on the opponent’s team
that is within two degrees of the agent’s current orientation.
If an agent fires and hits an opponent, the opponent loses one
hit-point. The score for a team is equal to the number of hit-
points that the opponent team loses in the course of the battle.

III. TOURNAMENT

Participants in an online tournament were asked to con-
tribute teams of autonomous agents evolved through neu-
roevolution or learned through value function reinforcement
learning. The submitted teams were then evaluated in a round-
robin virtual combat tournament. The space of behaviors and
their performance in the tournament are analyzed below. This
machine learning game tournament is a competition between
different training strategies devised by the human participants.

The OpenNERO platform was extended for this tournament
to allow mixed teams of rtNEAT (neural network) and state-
action value function approximator agents; in addition to
representation (arbitrary topology neural networks vs. hashed
state-action value function approximators), these rtNEAT and
Q-learning agents used different algorithms during training.
rtNEAT is a direct evolutionary policy search method that uses
lifetime fitness of each agent to rank individuals. Q-learning
is a temporal difference reinforcement learning method that
uses step-by-step reward information to update an estimate
of the value of performing different actions from observed
states in order to maximize the expected lifetime reward. The
methods also differed in how they combined the multiple and
multi-scale components of the fitness/reward function during
training. For rtNEAT–based training, individuals within the
population were ranked based on the weighted sum of the
Z-scores over the fitness components. For Q-learning–based
training, each fitness dimension was scaled to [0, 1], and then
a linear weighted sum was used to assign a total reward to
each individual.

Both types of controllers could be submitted to the online
tournament: artificial neural network controllers of arbitrary
weight and topology, and hash tables approximating the value
function of game states. The competitors could extend and/or
modify the available OpenNERO training methods as well as
create their own training environments and regimens. It was
this training that determined the fitness of each team when
pitted against other teams submitted to the tournament.
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Fig. 1: A screenshot of a single NERO match. Two
teams of agents are shown as bipedal robots in a play-
ing arena with obstacles and boundaries. More informa-
tion, including videos of sample games, can be viewed at
code.google.com/p/opennero/wiki/TournamentResults2011

About 85 participants submitted 156 teams to the tourna-
ment. Of these, 150 teams contained neural network-controlled
agents and 11 contained value table-controlled agents. Mixed
teams were also allowed; four of the submitted teams con-
tained both agent types.

Each team could include anywhere between 1 and 50
individual controllers, with any number of repeated controllers.
If the number of controllers in the team file was smaller
than 50, controllers were replicated in turn until 50 individual
agents could be created. If the number of submitted controllers
exceeded 50, only the first 50 were used.

To speed up the tournament, each match was played off-
screen and without AI frame delays (necessary if trying to
observe a match) and limited to 5 minutes of game time. In
practice, good teams were able to eliminate most opponents
in less than 5 minutes. The team with the highest remaining
number of hit points at the end of each match was declared the
winner. Ties were rare and were broken by a pseudo-random
coin toss. The matches were run in parallel on 100 nodes of a
Condor compute cluster, each a virtual machine with a 2GHz
Intel Core 2 processor and 2GB of RAM [6].

Each of the 156 submitted teams was matched against the
155 other teams. Each pair of teams was matched up twice,
allowing each team to play once as the blue team and once
as the red team. This resulted in 24,180 separate games, with
the whole tournament taking under 24 hours to complete.

IV. RESULTS AND ANALYSIS

The results of the tournament and an analysis of the strate-
gies exhibited by the submitted teams are presented below.
Team behaviors were categorized based on state statistics and
also qualitatively by running selected matches on-screen. In
this work we did not collect or consider the individual training
processes that went into the training of each team in the
tournament - this is an interesting direction for future work.
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Fig. 2: Results from the round-robin NERO tournament. Teams
are sorted by average score differential over all matches. Rows
and columns in the matrix represent teams in the tournament,
and colors represent score differentials for the respective
individual matches between two teams. Red indicates victory
by the row team, and blue indicates victory by the column
team.

Rank Team Total wins
1 synth.pop 137
2 synth flag.pop 130
3 me - Rambo 126
4 lolwutamidoing 126
5 PollusPirata 125
6 Cyber-trout 124
7 CirclingBullies 123
8 SneakySnipers 121
9 Tut 121

10 coward1 120

TABLE I: Top 10 teams submitted to the tournament. Overall
winner of the tournament was decided according to number of
wins, with any ties broken by score difference. Although there
are teams that dominate in terms of number of wins, there are
other teams that are able to defeat these strategies.

A. Match statistics

Figure 2 shows the complete results of the final round-
robin tournament. Black squares along the diagonal represent
matches that were not played, blue squares indicate a win by
the column team, and red squares indicate a win by the row
team. A group of near-duplicate teams shows up as the band
of similar-colored games about one-third of the way through
the matrix. The teams in the Figure are enumerated on both
axes in order of increasing average match score differential.

Table I lists the top ten teams. After each team plays every
possible opponent, the number of wins accrued by each team
provides a reasonable estimate of the probability of that team
winning in a future match [7]. Despite the large number
of teams, no single competitor emerged that significantly
outperformed all others (though some outperformed most).
This is sometimes referred to as a paradoxical tournament (see
Section IV-E).

The overall distribution of teams by number of wins is
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approximately normal with mean 76.7 (approximately equal to
half the number of games that each team plays) and standard
deviation 28.0; the fact that the distribution is normal implies
that number of wins that each team accrues can be thought of
as repeated samples from a common underlying process.

Teams also follow an approximately normal distribution
by score differential. They cluster around zero, with some
teams performing significantly better than the mean, others
performing significantly worse than the mean, and most teams
performing near zero. Teams in the top ten by average match
score were at least 1.5 standard deviations above the mean, and
the team with the largest average score differential exceeded
the mean by 2.2 standard deviations.

Collecting statistics of the tournament matches in this way
allows us to discover structure in the submission pool. For
example, it is possible to cluster teams by their relative score
vectors, finding teams that are similar because they win and
lose against the same opponents. It is also useful to see the
overall gradient of the score difference to notice if any teams
are particularly “dark” or “bright”, i.e. if they win or lose with
low or high score difference.

B. Correlation Analysis

An insight into training successful teams can be obtained
by measuring how well each team’s average score difference
correlates with the score difference when playing against a
weak, medium, and strong opponent (Figure 3).

Three trends can be observed from this data. First, the
correlation is higher when playing against a team of aver-
age strength. Second, higher-scoring teams are only good at
discriminating the other high scorers in the group. Third,
lower-scoring teams are only good at discriminating other low-
scoring teams.

This insight can be used when deciding which teams to
play against during the training process. As the team starts
out training, it is most useful for the team to train against
an average opponent (or perhaps even a low-scoring one) to
quickly identify and eliminate bad strategies. Then, as the
team improves, it may become beneficial for it to train against
higher scoring teams to continue to improve.

C. Successful strategies

In NERO, agents are “shaped” towards more complex
behaviors by progressively changing the environment and the
fitness function progressively during training. This process can
be used to create teams of agents that perform specific tasks
during a battle. Given the complexity of the environment and
the task, many different strategies can arise in this process,
and they can interact with each other in complex ways.
Considering this potential complexity, evolved strategies in the
tournament turned out to be surprisingly easy to analyze.

Because fitness is evaluated similarly for each team member
during training, teams generally consist of agents that perform

similar actions in a given world state3. It was therefore pos-
sible to characterize the most common strategies used in the
tournament by considering the histograms of agent positions
during sample games as described below.

D. Strategy clusters
In order to determine the different kinds of approaches taken

by team trainers, teams were clustered using the following
procedure. First, positions of team members during the match
were recorded and a coarse 32x32 heat-map formed for each
team (Figure 4a). These histograms were clustered using K-
medoid clustering around 10 representative behaviors. The
distribution of wins and scores within each cluster (Figure 4b)
was then considered to determine if any of these coarse
behavior clusters is significantly better within the tournament.

The clustering does produce several qualitatively distinct
categories of strategies. Many teams opted for moving towards
the wall, navigating around it to the left or the right, and
attacking the enemy team. However, other teams stayed near
their original location or even back-pedaled to the back wall,
leading to a more defensive strategy. Within each of these
categories, there were solutions that performed well as well
as strategies that did not (Figure 4b). In other words, what
mattered most was not just what high level strategy was used,
but also how well it was implemented. These fine differences
may be part of what makes the tournament interesting for
participants.

E. Strategy cycles
Perhaps most interestingly, the strategies do not form a

strict dominance hierarchy, but instead are highly cyclic. For
instance, the third-place me-Rambo reliably defeats the first-
place synth.pop, apparently due to subtle differences in
timing. On the other hand, synth.pop wins over the 24th-
place EvilCowards, because the synth.pop pack splits
into two and breaches the wall from both edges simultane-
ously. However, EvilCowards handily defeats me-Rambo,
because agents in the me-Rambo train are eliminated one-at-
a-time as they come around the wall!

The amount of cyclicality within a tournament can be mea-
sured formally by representing the results of the tournament
as a graph, where the teams are the vertices and the edges are
directed from winner to loser in each match. A tournament
graph is K-paradoxical, if for every K-sized subset of the
teams, S, there is some team t0 /∈ S such that for every t ∈ S
t0 beats t. In other words, a K paradoxical tournament is
K-removed from having a single dominant strategy [8]. The
OpenNERO tournament is paradoxical by this definition with
a K >> 1. Such cyclic landscape makes this an interesting
domain to train for, both from the point of view of a human
player, and as a technical question of how to train an AI agent
to do well in such a tournament.

3In principle, multiple teams can be trained using different shaping strate-
gies, and single agents from those teams then combined into one team by
copying the appropriate parts of the serialized team files (as was suggested
in the online tournament instructions). However, most teams submitted to the
tournament did not (yet) take advantage of this possibility; instead, agents
on a single team usually performed similar actions in response to each game
state.
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(a) Low scoring team (r = 0.38) (b) Medium scoring team (r = 0.69) (c) High scoring team (r = 0.39)

Fig. 3: Correlations between teams’ average round-robin score difference (x-axis) and their score difference when playing
against a weak team (a), a medium team (b), and a strong team (c). Correlations are strongest against a team of similar
strength, which suggests that training could most effectively proceed with opponents from low to high-scoring teams.
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(b) Distribution of victories vs losses within each cluster.

Fig. 4: K-medoid clustering was used to determine 10 clusters of 32x32 heat-maps of team behavior during matches against
a random opponent (a). As with individual teams, none these clusters dominate the others.

F. Tournament Stability

In order to test wether the tournament provides a stable
ranking over teams in the face of environment randomness and
other sources of noise, a second tournament was run among
the 10 top-ranked teams but now with 100 matches per team
pair instead of two.

Most of the match-ups in this top-10 tournament were stable
(Figure 5). However, given a particular ranking of teams (either
from the original tournament or from the top-10 tournament)
how do we know that the ranking is not due to chance?

For any given tournament instance, it is possible to define
a tournament stability index T between −1 and 1 [9]:

T =

∑K
i=1 vi
N

where K is the number of matches played and N is the number

Fig. 5: Stability of match-ups between the top 10 teams from
the tournament. Stability is measured as |w − l|, where w is
the number of wins and l is the number of losses (out of 100
repeated games).
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Baseline Wins Ties Losses score-∆ Rank
Random 79 21 56 -51.58 98/156

NN 23 1 125 -225.15 123/156
RL 77 22 59 -62.66 100/156

TABLE II: Performance of baseline teams.

of matches, and vi is defined:

vi =


1, if higher-ranked team won the match
−1, if lower-ranked team won the match
0 otherwise

The index is further normalized to ensure that a tournament
decided by random coin flips has expected stability index of
0.

Defining this index makes it possible to compare the stabil-
ity of different tournaments. For example, the full tournament
of all the submitted teams has a stability index of 0.455, while
the top-10 tournament with 100 repeats has a stability index
of .533. As a comparison, the most stable tournament Lundh,
et. al report an NBA tournament from 1995-96 as having a
stability index of 0.31.

G. Baseline Comparisons
In order to provide a baseline level of performance in the

battle tournament task, several artificial teams were introduced
into the tournament. The uniform random team (random)
simply returns a pseudo-random number within the range of
possible action values at each step. The untrained neural net-
work team (NN) consists of fully connected single-layer neural
networks initialized with normally distributed random weights
(as in the starting population for rtNEAT). The untrained
reinforcement learning team (RL) baseline is the performance
of the policies represented by the sparsely initialized function
approximator and epsilon-greedy action selection. The results
of these baseline comparisons are summarized in Table II.

Overall, the trend seen within the submitted teams still
holds, i.e. no team dominates all others nor is any team
absolutely dominated by others. Surprisingly, the uniform
random baseline performs relatively well.

The explanation for the relatively high performance of the
uniform random baseline may be that it is a fundamentally
different type of behavior from all the others in the tournament,
one that is not commonly the result of the training processes
available to the participants of the tournament.

While the random behavior performs surprisingly well
(perhaps by being equally prepared for any strategy it plays
against), it is not particularly interesting to watch. The baseline
comparisons add support the idea that human trainers develop
their teams based on a rational model of what they will
encounter in the tournament, and that the random baseline
is not what they expect. However, the low ranking of the RL
and NN baselines shows that the submissions were, by and
large, an improvement over the starting point of the training
process.

V. DISCUSSION AND FUTURE WORK

Even though a number of distinct approaches were identified
among the successful NERO teams, it was also clear that there

was no single best strategy. At this point it is unclear whether
such a strategy even exists, and this is indeed what makes the
game interesting. There is room for innovation and creativity,
and the outcomes often turn out to be surprising.

With more multi-objective evolutionary methods [10], it
might also be possible to develop multi-modal behaviors
that identify what strategy the opponent is using, and select
a counter-strategy accordingly. It might also be possible in
principle to adapt to opponents online, while the battle is
taking place.

Larger tournaments could be supported by using a hybrid
structure; round-robin pools could be run in parallel to identify
the proper seeds for top-ranking teams, and then a double-
elimination tournament could be used to identify the overall
winner. Thanks to the independence of individual matches in
round-robin tournaments and within each level of a knockout
tournament, it should be possible to scale up to even larger
tournaments by running games on more compute nodes or
carefully designing a tournament structure to optimize the use
of available resources.

In the future, the demonstrated crowd sourcing of teams of
artificial agents can be instrumented to record how the teams
are trained, in order to improve the human-guided aspects
of the training algorithms. What methods of training work
well? This evaluation strategy can be combined with human
subject studies similar to [11] in order to contrast and compare
alternative methods for combining human creativity and the
speed and breadth of machine learning approaches.

VI. CONCLUSION

The results of the online NERO tournament demonstrate
that successful behaviors in a complex multi-agent game can
be highly diverse, which is precisely what makes training
such teams an interesting game component. The results also
show that complex behaviors can be constructed effectively
by shaping neuroevolution, demonstrating its power as an
approach for constructing NPCs for complex games. Finally,
the machine learning game tournament format and the asso-
ciated analysis techniques are a promising experimental tool
in studying human-guided machine learning methods. On the
whole, machine learning games are both a viable genre for
game developers and a useful tool for artificial intelligence
researchers.
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