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Abstract
Many different methods for combining human ex-
pertise with machine learning in general, and evo-
lutionary computation in particular, are possible.
Which of these methods work best, and do they out-
perform human design and machine design alone?
In order to answer this question, a human-subject
experiment for comparing human-assisted machine
learning methods was conducted. Three different
approaches, i.e. advice, shaping, and demonstra-
tion, were employed to assist a powerful machine
learning technique (neuroevolution) on a collection
of agent training tasks, and contrasted with both a
completely manual approach (scripting) and a com-
pletely hands-off one (neuroevolution alone). The
results show that, (1) human-assisted evolution out-
performs a manual scripting approach, (2) unas-
sisted evolution performs consistently well across
domains, and (3) different methods of assisting
neuroevolution outperform unassisted evolution on
different tasks. If done right, human-assisted neu-
roevolution can therefore be a powerful technique
for constructing intelligent agents.

1 Introduction
When building autonomous agents with complex behavior,
such as non-player characters for a video game, or a robotic
soccer team, machine learning techniques can be highly use-
ful. For example, evolution of artificial neural networks with
augmenting topologies (NEAT) has been demonstrated to be
effective in the NERO machine-learning video game, where
human players compete to design the most effective policy
for agents in a complex virtual environment [Stanley et al.,
2005].

However, human domain experts often lack sufficient ex-
perience in machine learning techniques to translate their
knowledge into model parameters and training processes. Ef-
fective and natural ways to combine their domain expertise
with machine learning are needed; such techniques would
enable experts and non-experts alike to direct machine learn-
ing with their knowledge, thus speeding up the process of
creating effective and interesting behaviors for autonomous
agents.

Many candidate approaches to this problem of human-
assisted machine learning have been proposed [Knox and
Stone, 2009; Nicolescu and Mataric, 2002; Abbeel and Ng,
2004; Kuhlmann et al., 2004; Torrey et al., 2006]. In order
to compare and contrast their advantages and disadvantages,
this article presents a human subject experiment evaluating
the relative merit of three possible approaches: giving advice
in terms of rules, demonstrating the desired behavior through
examples, and shaping machine learning through a sequence
of gradually more challenging tasks.

Figure 1: A screenshot of the 3D environment with a hu-
man user attempting to solve one of the test tasks using the
shaping-assisted neuroevolution method.

In the experiment, the subjects took on the role of agent be-
havior engineers. Three different behavior design tasks com-
monly solved as part of the NERO machine-learning game
were implemented in OpenNERO1, an open-source platform
for AI research and education (Figure 1). These tasks were
a simple navigation around an obstacle (basic navigation),
catching a fast moving obstacle (dynamic navigation), and
going to a number of targets in sequence (sequential be-
havior). The experiment held the machine learning algo-
rithm constant—it used the NeuroEvolution of Augment-
ing Topologies (NEAT) method [Stanley and Miikkulainen,
2002]—and varied the method that the human subjects used
to assist neuroevolution in developing the desired policy. In
addition to advice, examples, and shaping, neuroevolution

1opennero.googlecode.com
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alone and a fully manual approach, scripting, were tested as
controls.

Each subject was assigned one of the three methods of as-
sisting machine learning. They were then asked to solve each
of the three tasks twice, once using the scripting method,
and once using their assigned human-assisted neuroevolution
method. All the interactions of the subjects with the sys-
tem were logged via screen capture video and logs created
by OpenNERO.

In all tasks, human-assisted and unassisted neuroevolution
were more effective than manual scripting. Unassisted evolu-
tion was consistently good across all tasks; However, a differ-
ent human-assisted method outperformed it in different tasks,
revealing interesting differences and opportunities for them:

Overall, human-assisted machine learning turned out to be
a powerful approach, given that the right method can be cho-
sen for the task. The rest of this article is organized as follows.
Section 2 describes related work in combining human design
and machine learning. Section 3 provides the details of the
behavior design tasks created for the experiments, the archi-
tecture of the agents’ sensors and actuators within the virtual
environment, and the three alternative approaches to assisting
neuroevolution with human knowledge. Section 4 describes
how the experiments were conducted, and section 5 presents
the results. Section 6 draws general conclusions about the re-
sults and outlines future work in leveraging human expertise
with machine learning.

2 Related Work
Almost any machine learning technique applied to au-
tonomous agent behavior can be considered human-assisted
due to the time spent by the designers picking features and
representations, tuning parameters, selecting a termination
condition, or otherwise affecting the search bias. However,
methods have been proposed that are specifically designed to
be useful to domain experts without detailed access to the un-
derlying machine learning algorithm.

One possibility is shaping the learning process via human
evaluative feedback. For example, the TAMER system com-
bines human reinforcement with MDP learning in order to
speed up the learning process and make it more sample-
efficient [Knox and Stone, 2010]. Similarly, fitness shap-
ing methods can be used with evolutionary computation as
demonstrated with neuroevolution and the NERO machine
learning game [Stanley et al., 2005].

Another approach involves formulating knowledge about
the domain as rules, and providing these rules as a useful ad-
dition to the learning algorithm. An early example of this
type of approach includes the work by Maclin and Shavlik,
where rules were used to modify a value function approxi-
mated with an artificial neural network [Maclin and Shavlik,
1996]. More recently, modern natural language processing
techniques have been recruited in order to free the human
user from the need to use a specially crafted formal language
[Kuhlmann et al., 2004].

A third approach to assisting learning agents involves
demonstration of expert performance in the domain. For ex-
ample, imitation learning has been applied to learning driving

policies for virtual race cars [Cardamone et al., 2009]. A vari-
ant of the demonstration-based approaches is apprenticeship
learning through inverse reinforcement, where the expert be-
havior is used to estimate the reward function which is then
used for learning in conjunction with a model of the environ-
ment [Abbeel and Ng, 2004; Ramachandran and Amir, 2007].

The power of such approaches has been demonstrated
many times. For example, apprenticeship learning was used
to successfully learn autonomous control for aerobatic heli-
copters [Coates et al., 2009]. Some attempts to concentrate
the study on the human component of human-assisted ma-
chine learning systems are being made [Zang et al., 2010b;
Zang et al., 2010a], however, much more work needs to be
done in order to find out how these different methods of
providing assistance to machine learning methods compare
against each other, and against manual policy design meth-
ods.

3 System Description
The experiments described in this article were performed us-
ing three behavior design tasks implemented within the ma-
chine learning video game OpenNERO (Section 3.1). The
tasks involved training a team of virtual agents (Section 3.2)
using one of three approaches to human-assisted neuroevolu-
tion (Section 3.4) and a manual scripting approach.

3.1 Behavior Design Tasks

(a) Around (b) Chase (c) Sequence

Figure 2: The three tasks used during the experiments. The
blue bars represent walls, the red crosses represent the spawn-
ing location of the agents, and the green boxes represent the
targets that the agents were required to reach in order to com-
plete the task.

In order to explore the breadth of possible tasks that might
face a designer of game bot behavior, three tasks were created
for the experiment (Figure 2).

One task commonly encountered by game bots is the
“Around” task, where the bots have to navigate to a target
around some level geometry. In order to test this scenario,
the subjects were presented with an obstacle avoidance task
(Figure 2a). The fitness on the task is defined as 1.0 or greater
if the agent starting at the origin reaches the goal and collects
the cube positioned there.

The second task tested in the experiment is the “Chase”
task (Figure 2b). The task consists of a target moving along
a predefined trajectory (in this case, a circle). The goal of
the agent is to reach the moving target and to collect the 1.0
fitness by doing so. Another part of the fitness is normalized
to range between 0.0 (agent ending far away from the target)
and 0.1 (agent ending close to the target).



The third task tested in the experiment is the “Sequence”
task (Figure 2c). The task consists of four resources posi-
tioned behind two walls. It is possible for an agent to move
around the walls and collect all four, but not with a lot of
time to spare. The agent receives a +1 towards its fitness for
reaching a resource, and a fraction of 0.1 for getting close to
one.

3.2 Agent Configuration

Each agent can sense the virtual environment through a set
of egocentric sensors and act in the environment using a set
of actuators. The sensors consist of eight target cube sensors
and four wall sensors. All observations were normalized to
lie within the range [0, 1].

The target sensors’ value increases linearly with relative
proximity of the cube and with angular alignment of the sen-
sor axis with the ray cast towards the location of the cube.
The value is cumulative for all cubes in the environment.
The cubes disappear from agent’s view after they are visited
once. The wall sensors return binary observations that report
whether or not a ray cast in the direction of the sensor inter-
sects a wall in the environment.

The agents have two continuous action outputs. The actu-
ator a0 sets the speed of forward motion: it stops the agent
when its value is set to 0, and moves the agent at the max-
imum allowed speed as the value approaches −1 or 1. The
actuator a1 sets the turn rate, ranging from −1 (maximum
left turn) to 1 (maximum right turn).

The fitness is defined as +1.0 for each target reached, and
a fraction of 0.1 for approaching the target faster, for getting
closer to a target, or for closely following the example trace.

3.3 Manual Design Through Scripting

One possible approach to designing a complex behavior (and
the one usually used in game industry) is to simply write a
deterministic program to execute it. Thus each subject in the
experiment was asked to solve the tasks using a custom script-
ing language that consists of a collection of if-statements that
determine the actions of the agent given its current inputs.

A simple procedural language based on KBANN
(Knowledge-Based Artificial Neural Networks; [Maclin and
Shavlik, 1996]) and in earlier work on human-assisted neu-
roevolution [Yong et al., 2006] was implemented in Open-
NERO. The language consists of simple if-then-else con-
structs, where the if-statement conditions are based on binary
comparisons of sensor values and then- and else-clauses can
assign constant values to output actuators or to temporary reg-
ister values. The script is processed using a lexical analyzer
and parsed using a parser generated from a set of context-free
grammar rules.

Using KBANN, the scripts written in this language are
compiled into neural networks that implement the desired be-
havior. In the fully manual scripting case, these networks are
used as the sole controllers. However, these networks can
also be used as pieces of advice to the neuroevolution, as de-
scribed next.

3.4 Human-Assisted Neuroevolution
Neuroevolution provides a suitable testbed to compare differ-
ent ways of integrating human knowledge because it is capa-
ble of supporting many of them. For the experiment presented
in this article, the subjects were asked to train populations of
NEAT agents to complete a number of tasks using one of four
approaches defined below.

Advice
The scripting language used in manual design can also be
used to formulate pieces of advice, instead of the entire be-
havior at once. Such advice can then be converted into small
neural networks, and spliced into the networks of the actively
evolving population. It is easy for NEAT to incorporate such
advice because it adds nodes and connections to evolving net-
works already as part of evolution. If the advice network
provides a useful modification to the individual’s behavior,
it will be incorporated into subsequent generations, speeding
up learning. If the piece of advice is not beneficial, it will
be selected against or even reused for something else later in
evolution.

Examples
A second way to assist evolution of agents is to provide them
with a trace of an example behavior. The subjects were asked
to provide such a trace by controlling an agent from a third-
person perspective via keyboard commands.

In order to match the agent behavior with examples of dif-
ferent length and complexity, a segment-based approach was
developed. A trace is recorded and stored as a sequence of
agent positions. It is then broken up into segments 10 steps
long. Each neural network is first evaluated on how well it
matches the example, and then it is trained to match it better
using backpropagation.

During evaluation, the network is allowed to move the
agent for 10 steps starting at the beginning point of the first
segment. If its path deviates too much from the example, the
network is trained with backpropagation on this segment. If
the network’s path follows the example segment to within a
small deviation, the next segment of the path is evaluated, un-
til all segments have been processed. The network’s fitness is
a fraction of segments successfully matched.

During backpropagation training, the output actions that
would have generated the example path are used as targets,
and the input activations resulting from the agent’s location
as the input. Each step through the segment generates one
backpropagation input/output pair; the network is trained on
each pair once, backpropagating the error through the net-
work topology until all weights leading from the inputs are
updated. The backpropagation changes are then encoded
back into the genetic representation of the network, and are
thus inherited by its offspring.

Shaping via Environment
A third way to assist evolution of agents is to shape their
behavior by modifying the task gradually. The tasks were
instrumented with a graphical user interface with which the
subjects could modify the environment and task parameters,
thereby guiding the process of evolution. The idea is that the



engineer will be able to find the appropriate task decomposi-
tion using such a method: After a simpler version of the task
is solved, a more complicated version of the task may become
easier for neuroevolution to master.

Several different kinds of shaping approaches were possi-
ble. In free environment modification, the user adds or re-
moves targets and walls at any location on the field. The user
can also scale and rotate these objects, as well as move them
from one location to another. In restricted environment mod-
ification, specific keys on the keyboard are used to add, reset
or remove the objects that were part of the original task. In
parametrized environment modification, the subjects are able
to modify the speed and trajectory of the moving target in the
dynamic target domain. The subjects did indeed use each of
these in the process of attempting to discover a useful shaping
strategy.

4 Experiments
In order to compare the different methods of assisting evo-
lution in constructing agent behavior, a human subject study
was conducted. Participants in the study took on the roles
of engineers attempting to create agents with a particular be-
havior in order to solve three machine-learning game tasks
defined below.

The interactions with the system were recorded and ana-
lyzed to extract the success rate in solving the tasks using the
different methods, how long it took to solve them, and how
many times they had to restart before reaching a solution.

Additionally, in order to compare the performance of the
human-assisted evolution and human manual scripting to evo-
lution alone, 30 runs of evolution were performed on each of
the three tasks.

Sixteen subjects were drawn from a freshman research
course. The subjects had experience using neuroevolution in
the context of a machine-learning game, and had a lecture de-
scribing how the method works. Each subject was introduced
to the tasks and approaches they were going to use by means
of a tutorial and a demonstration of the user interface. Each
subject was randomly assigned a sequence of tasks and a pair
of methods. They were then asked to use the pair of methods
to solve the tasks in order. Every subject was asked to solve
their task with the scripting method as one of the two. The
other method was selected from one of shaping, example or
advice. Each subject would thus use scripting and another
method to solve all three tasks they were assigned.

Each subject was allowed two hours total to work on the
tasks. Subjects were not allowed to work longer than 30
minutes on each task and method combination. Each sub-
ject could attain at most one successful solution for each of
the six task/method combinations they were assigned.

All subjects were briefed before the experiment, describ-
ing the timeline of the experiment, the methods they were
allowed to use, the user interface they were using for the ex-
periment, the tasks they were solving, and the goal they had
to achieve within each task.

All subjects filled out a survey immediately after the ex-
periment rating the quality of their solutions, the quality of
the approaches they used, how many times they had to restart

on each task/method combination, and whether or not they
understood the task.

When running neuroevolution, subjects had the choice of
running it in “visible” mode that shows every action of ev-
ery agent, or in “headless” mode, that runs evolution in the
background and can make progress four to five times faster.
Running neuroevolution alone was done using the “headless”
mode.

5 Results
All results presented in this section exclude the first
task/method combination for each subject. This was done be-
cause leave-one-out analysis shows an acclimatization effect
of the subjects where they improve their performance after
having gotten used to the interface during the first trial.
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Figure 3: Average time spent by subjects before successfully
solving each task. Bars not shown indicate an unknown value
because no successful solutions were seen in the data. Evo-
lution alone does consistently well and outperforms script-
ing, but is always outperformed by one of the human-assisted
methods.

In order to collect objective measures of the performance
of these methods, the interactions of the users with the Open-
NERO interface were logged and recorded via screen capture.
Three main measures were collected - the rate of success (i.e.
whether or not the subject was able to solve a particular task
using a particular method within the allotted time), the time
to solution (how long the subject took to solve the task), and
the number of restarts (how many times the subject restarted
the interface before reaching a solution).

The average time per solution (the sum of the total time
taken by all subjects divided by the number of successful so-
lutions) is shown in Figure 3. An equivalent measure is also
shown for neuroevolution without human assistance. This
measure represents the expected amount of time one would
have to wait before a solution is obtained, for each task and
method. In all three cases, evolution performs well and out-
performs scripting. Additionally, at least one human-assisted
method outperforms neuroevolution alone on each task.

Another interesting result of the experiments becomes ap-
parent when considering the detailed timelines of the success
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Figure 4: Fraction of “Around” tasks solved by each method
over time. Here, scripting, shaping, and advice do not work
as well as evolution alone, but example allows all the subjects
to solve their task before evolution does, using fewer samples
of the simulation in the process.

rates of the methods (Figures 4, 5, and 6). In each case,
unassisted and human-assisted evolution perform much better
than scripting. While neuroevolution performs consistently
well across the domains, it is outperformed by one of the
human-assisted methods in each task – a different one in each
case. While example traces work best in the Around task, ad-
vice works best in the Chase task and shaping works best in
the Sequence task.

These results confirm that both neuroevolution and human-
assisted neuroevolution outperform the manual scripting ap-
proach and that human-assisted neuroevolution is most effec-
tive, given the right approach to the task.

6 Discussion and Future Work
The result that different human assisted neuroevolution meth-
ods are best in different tasks makes sense when one consid-
ers the inherent characteristics of the tasks.

First, in the simple obstacle avoidance task, all methods
work relatively well and the intuitive nature and ease of use
of the example method allow users to complete the task in a
short amount of time.

In the target chase task, in contrast, while it remains possi-
ble to solve the task with examples, the examples that are first
attempted by the subjects are not as helpful, and the process
therefore takes a longer time. Also, the task does not lend
itself well to shaping because it contains a conceptual discon-
tinuity: the behavior required to reach slow moving targets or
targets that move within a smaller radius is drastically differ-
ent from that of the complete solution. Thus shaping by mod-
ifying the environment is not a good fit for this task. However,
formulating what needs to be done as either advice or script
is relatively easy in this task, and neuroevolution with advice
has an advantage because it can recover from mistakes made
during rule design and learn some of the task autonomously.

In the Sequence task depicted in Figure 2c, the complicated
nature of the environment and the possibility to decompose
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Figure 5: Fraction of “Chase” tasks solved by each method
over time. In this task, shaping and scripting do not work at
all, but advice allows the subjects to solve all the tasks before
evolution alone.

the task into logical subtasks allow shaping to outperform
advice and example. In particular, an effective and simple
shaping strategy is to simply remove all the targets except
for the one that should come first in the sequence, and allow
neuroevolution to master that task first, after adding the next
target in the sequence and repeating until the complete task is
learned.

In addition to performing well compared to unassisted neu-
roevolution in real time, it is important to note that human
assisted neuroevolution is much more sample-efficient in that
it requires many fewer interactions with the environment per
unit time. In particular, while the entire time during the neu-
roevolution runs was spent evaluating neural network con-
trollers in the environment at the highest possible speed, the
human-assisted methods dedicate a fraction of time to other
activities, such as writing scripts and advice pieces, provid-
ing example behavior traces, running neuroevolution in the
slower real-time mode in order to verify the agents’ perfor-
mance, or simply thinking about the problem. Therefore it is
a particularly good approach when testing candidate solutions
is expensive.

The results of such experiments can be used to select
and customize human-assisted evolution methods for build-
ing autonomous agents in virtual environments, as well as
autonomous robots that interact with and learn from humans.
They may also be used to train machine learning agents that
adapt to a changing task on the fly. Most importantly, they
give human engineers a degree of control that may make
it easier for them to incorporate advanced machine learning
techniques into the design process.

7 Conclusions
This article described the design and results of a human sub-
ject experiment evaluating three different approaches to com-
bining human domain knowledge with neuroevolution, com-
paring them with both completely manual design and com-
pletely automated discovery through neuroevolution. The re-
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Figure 6: Fraction of “Sequence” tasks solved by each
method over time. Here, the task is more challenging for all
methods, but the best method turns out to be shaping because
the task can be easily decomposed by modifying the environ-
ment.

sults demonstrate that (1) human-assisted evolution outper-
forms a manual scripting approach, (2) unassisted evolution
performs consistently well across domains, and (3) different
methods of human-assisted neuroevolution outperform unas-
sisted evolution on different tasks. Therefore, if done right,
human-assisted neuroevolution can be powerful technique for
constructing intelligent agents in the future.
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