
Evolutionary Neural AutoML for Deep Learning
Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto Miikkulainen∗

Cognizant Technology Solutions
The University of Texas at Austin

ABSTRACT
Deep neural networks (DNNs) have produced state-of-the-art re-
sults in many benchmarks and problem domains. However, the
success of DNNs depends on the proper configuration of its ar-
chitecture and hyperparameters. Such a configuration is difficult
and as a result, DNNs are often not used to their full potential. In
addition, DNNs in commercial applications often need to satisfy
real-world design constraints such as size or number of parameters.
Tomake configuration easier, automatic machine learning (AutoML)
systems for deep learning have been developed, focusing mostly on
optimization of hyperparameters.

This paper takes AutoML a step further. It introduces an evolu-
tionary AutoML framework called LEAF that not only optimizes
hyperparameters but also network architectures and the size of the
network. LEAFmakes use of both state-of-the-art evolutionary algo-
rithms (EAs) and distributed computing frameworks. Experimental
results on medical image classification and natural language analy-
sis show that the framework can be used to achieve state-of-the-art
performance. In particular, LEAF demonstrates that architecture
optimization provides a significant boost over hyperparameter op-
timization, and that networks can be minimized at the same time
with little drop in performance. LEAF therefore forms a foundation
for democratizing and improving AI, as well as making AI practical
in future applications.
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1 INTRODUCTION
Applications of machine learning and artificial intelligence have
increased significantly recently, driven by both improvements in
computing power and quality of data. In particular, deep neural
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networks (DNN) [29] learn rich representations of high-dimensional
data, exceeding the state-of-the-art in an variety of benchmarks
in computer vision, natural language processing, reinforcement
learning, and speech recognition [16, 21, 23]. Such state-of-the-
art DNNs are very large, consisting of hundreds of millions of
parameters, requiring large computational resources to train and
run. They are also highly complex, and their performance depends
on their architecture and choice of hyperparameters [13, 23, 39].

Much of the recent research in deep learning indeed focuses
on discovering specialized architectures that excel in specific tasks.
There is much variation betweenDNN architectures (even for single-
task domains) and so far, there are no guiding principles for deciding
between them. Finding the right architecture and hyperparameters
is essentially reduced to a black-box optimization process. However,
manual testing and evaluation is a tedious and time consuming
process that requires experience and expertise. The architecture
and hyperparameters are often chosen based on history and con-
venience rather than theoretical or empirical principles, and as a
result, the network has does not perform as well as it could. There-
fore, automated configuration of DNNs is a compelling approach
for three reasons: (1) to find innovative configurations of DNNs that
also perform well, (2) to find configurations that are small enough
to be practical, and (3) to make it possible to find them without
domain expertise.

Currently, the most common approach to satisfy the first goal
is through partial optimization. The authors might tune a few hy-
perparameters or switch between several fixed architectures, but
rarely optimize both the architecture and hyperparameters simulta-
neously [24, 49]. This approach is understandable since the search
space is massive and existing methods do not scale as the num-
ber of hyperparameters and architecture complexity increases. The
standard and most widely used methods for hyperparameter op-
timization is grid search, where hyperparameters are discretized
into a fixed number of intervals and all combinations are searched
exhaustively. Each combination is tested by training a DNN with
those hyperparameters and evaluating its performance with respect
to a metric on a benchmark dataset. While this method is simple
and can be parallelized easily, its computational complexity grows
combinatorially with the number of hyperparameters, and becomes
intractable once the number of hyperparameters exceeds four or
five [27]. Grid search also does not address the question of what
the optimal architecture of the DNN should be, which may be just
as important as the choice of hyperparameters. A method that can
optimize both structure and parameters is needed.

Recently, commercial applications of deep learning have become
increasingly important and many of them run on smartphones. Un-
fortunately, the hundreds of millions of weights of modern DNNs
cannot fit to the few gigabytes of RAM in most smartphones. There-
fore, an important second goal of DNN optimization is to minimize
the complexity or size of a network, while simultaneously maximiz-
ing its performance [25]. Thus, a method for optimizing multiple
objectives is needed to meet the second goal.
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In order to achieve the third goal, i.e. democratizing AI, systems
for automating DNN configuration have been developed, such as
Google AutoML [1] and Yelp’s Metric Optimization Engine (MOE
[5], also commercialized as a product called SigOpt [8]). However,
existing systems are often limited in both the scope of the prob-
lems they solve and how much feedback they provide to the user.
For example, Google AutoML system is a black-box that hides the
network architecture and training from the user; it only provides
an API by which the user can use to query on new inputs. MOE is
more transparent on the other hand, but since it uses a Bayesian
optimization algorithm underneath, it only tunes hyperparameters
of a DNN. Neither systems minimizes the size or complexity of the
networks.

The main contribution of this paper is a novel AutoML system
called LEAF (Learning Evolutionary AI Framework) that addresses
these three goals. LEAF leverages and extends an existing state-
of-the-art evolutionary algorithm for architecture search called
CoDeepNEAT [35], which evolves both hyperparameters and net-
work structure. While its hyperparameter optimization ability al-
ready matches those of other AutoML systems, LEAF’s additional
ability to optimize DNN architectures further makes it possible to
achieve state-of-the-art results. The speciation and complexification
heuristics inside CoDeepNEAT also allows it to be easily adapted
to multiobjective optimization to find minimal architectures. The
effectiveness of LEAF will be demonstrated in this paper on two do-
mains, one in language: Wikipedia comment toxicity classification
(also referred to as Wikidetox), and another in vision: Chest X-rays
multitask image classification. LEAF therefore forms a foundation
for democratizing, simplifying, and improving AI.

2 BACKGROUND AND RELATEDWORK
This section will review background and related work in hyperpa-
rameter optimization and neural architecture search.

2.1 Hyperparameter Tuning for DNNs
As mentioned in Section 1, the simplest form of hyperparameter
optimization is exhaustive grid search, where points in hyperpa-
rameter space are sampled uniformly at regular intervals [49]. A
straightforward extension is random search, where the points are
sampled uniformly at random from the search space [11]. These
methods can optimize simple DNNs, but are ineffective when all hy-
perparameters are crucial to performance and must be tuned to very
particular values. For networks with such characteristics, Bayesian
optimization using Gaussian processes [44] is a feasible alternative.
Bayesian optimization requires relatively few function evaluations
and works well on multimodal, non-separable, and noisy functions
where there are several local optima. It first creates a probability dis-
tribution of functions (also known as Gaussian process) that best fits
the objective function and then uses that distribution to determine
where to sample next. The main weakness of Bayesian optimization
is that it is computational expensive and scales cubically with the
number of evaluated points. DNGO [45] tried to address this is-
sue by replacing Gaussian processes with linearly scaling Bayesian
neural networks. Another downside of Bayesian optimization it per-
forms poorly when the number of hyperparameters is moderately
high, i.e. more than 10-15 [32].

EAs are another class of algorithms widely used for black-box
optimization of complex, multimodal functions. They rely on biolog-
ical inspired mechanisms to improve iteratively upon a population

of candidate solutions to the objective function. One particular EA
that has been successfully applied to DNN hyperparameter tun-
ing is CMA-ES [32]. In CMA-ES, a Gaussian distribution for the
best individuals in the population is estimated and used to gener-
ate/sample the population for the next generation. Furthermore,
it has mechanisms for controlling the step-size and the direction
that the population will move. CMA-ES has been shown to perform
well in many real-world high-dimensional optimization problems
and in particular, CMA-ES has been shown to outperform Bayesian
optimization on tuning the parameters of a convolutional neural
network [32]. It is however limited to continuous optimization and
there does not extend naturally to architecture search.

2.2 Architecture Search for DNNs
One recent approach is to use reinforcement learning (RL) to search
for better architectures. A recurrent neural network (LSTM) con-
troller generates a sequence of layers that begin from the input
and end at the output of a DNN [55]. The LSTM is trained through
a gradient-based policy search algorithm called REINFORCE [51].
The architecture search space explored by this approach is suf-
ficiently large to improve upon hand-design. On popular image
classification benchmarks such as CIFAR-10 and ImageNet, such
an approach achieved performance within 1-2 percentage points
of the state-of-the-art, and on a language modeling benchmark, it
achieved state-of-the-art performance at the time [55].

However, the architecture of the optimized network still must
have either a linear or tree-like core structure; arbitrary graph
topologies are outside the search space. Thus, it is still up to the
user to define an appropriate search space beforehand for the algo-
rithm to use as a starting point. The number of hyperparameters
that can be optimized for each layer are also limited. Furthermore,
the computations are extremely heavy; to generate the final best
network, many thousands of candidate architectures have to be
evaluated and trained, which requires hundreds of thousands of
GPU hours.

An alternative direction for architecture search is evolutionary
algorithms (EAs). They are well suited for this problem because
they are black-box optimization algorithms that can optimize arbi-
trary structure. Some of these approaches use a modified version of
NEAT [43], an EA for neuron-level neuroevolution [46], for search-
ing network topologies. Others rely on genetic programming [47] or
hierarchical evolution [31]. There is some very recent work on mul-
tiobjective evolutionary architecture search [18, 33], where the goal
is to optimize both the performance and training time/complexity
of the network.

The main advantage of EAs over RL methods is that they can
optimize over much larger search spaces. For instance, approaches
based on NEAT [43] can evolve arbitrary graph topologies for the
network architecture. Most importantly, hierarchical evolutionary
methods [31], can search over very large spaces efficiently and
evolve complex architectures quickly from a minimal starting point.
As a result, the performance of evolutionary approaches match or
exceed that of reinforcement learning methods. For example, the
current state-of-the-art results on CIFAR-10 and ImageNet were
achieved by an evolutionary approach [42]. In this paper, LEAF
uses CoDeepNEAT, a powerful EA based on NEAT that is capable
of hierarchically evolving networks with arbitrary topology.
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Figure 1: A visualization of LEAF and its internal subsys-
tems. The three main components are: (1) the algorithm
layer which uses CoDeepNEAT to evolve hyperparameters
or neural networks, (2) the system layer which helps train
and evaluate the networks evolved by the algorithm layer,
and (3) the problem-domain layer, which utilizes the two pre-
vious layers to optimize DNNs. The decoupling of the algo-
rithm and system layers allows LEAF to be easily applied to
varying problem types, e.g., via options for multiobjective
optimization and different types of neural network layers.

3 LEAF OVERVIEW
LEAF is an AutoML system composed of three main components:
algorithm layer, system layer, and problem-domain layer. The algo-
rithm layer allows the LEAF to evolve DNN hyperparameters and
architectures. The system layer parallelizes training of DNNs on
cloud compute infrastructure such as Amazon AWS [2], Microsoft
Azure [6], or Google Cloud [3], which is required to evaluate the
fitnesses of the networks evolved in the algorithm layer. The algo-
rithm layer sends the network architectures in Keras JSON format
[14] to the system layer and receives fitness information back. These
two layers work in tandem to support the problem-domain layer,
where LEAF solves problems such as hyperparameter tuning, archi-
tecture search, and complexity minimization. An overview of LEAF
AutomML’s structure is shown in Figure 1.

3.1 Algorithm Layer
The core of the algorithm layer is composed of CoDeepNEAT, an
cooperative coevolutionary algorithm based on NEAT for evolving
DNN architectures and hyperparameters [35]. Cooperative coevolu-
tion is a commonly used technique in evolutionary computation to
discover complex behavior during evaluation by combining simpler
components together. It has been used with success in many do-
mains, including function optimization [40], predator-prey dynam-
ics [53], and subroutine optimization [52]. The specific coevolution-
ary mechanism in CoDeepNEAT is inspired by Hierarchical SANE
[38] but is also influenced by component-evolution approaches of
ESP [20] and CoSyNE [19]. These methods differ from conventional
neuroevolution in that they do not evolve entire networks. Instead,
both approaches evolve components that are then assembled into
complete networks for fitness evaluation.

Blueprint  Modules  Assembled Network

Module 
Species 1

Module 
Species 2

1

2

1

Figure 2: A visualization of how CoDeepNEAT assembles
networks for fitness evaluation. Modules and blueprints are
assembled together into a network through replacement
of blueprint nodes with corresponding modules. This ap-
proach allows evolving repetitive and deep structures seen
in many hand-designed DNNs.

Algorithm 1 CoDeepNEAT
1. Given population of modules/blueprints
2. For each blueprint Bi during every generation:

3. For each node Nj in Bi
4. Choose randomly from module species that Nj points to
5. Replace Nj with randomly chosen moduleMj

6. When all nodes in Bi are replaced, convert Bi to assembled
network Ni
7. Evaluate fitnesses of the assembled networks N
8. For each network Ni

9. Attribute fitness of Ni to its component blueprint Bi and
modulesMj
10. Evolve blueprint and module population with NEAT

CoDeepNEAT follows the same fundamental process as NEAT:
First, a population of chromosomes ofminimal complexity is created.
Each chromosome is represented as a graph and is also referred
to as an individual. Over generations, structure (i.e. nodes and
edges) is added to the graph incrementally through mutation. As in
NEAT, mutation involves randomly adding a node or a connection
between two nodes. During crossover, historical markings are used
to determine how genes of two chromosomes can be lined up and
how nodes can be randomly crossed over. The population is divided
into species (i.e. subpopulations) based on a similarity metric. Each
species grows proportionally to its fitness and evolution occurs
separately in each species.

CoDeepNEAT differs from NEAT in that each node in the chro-
mosome no longer represents a neuron, but instead a layer in a
DNN. Each node contains a table of real and binary valued hyperpa-
rameters that are mutated through uniform Gaussian distribution
and random bit-flipping, respectively. These hyperparameters de-
termine the type of layer (such as convolutional, fully connected,
or recurrent) and the properties of that layer (such as number of
neurons, kernel size, and activation function). The edges in the chro-
mosome are no longer marked with weights; instead they simply
indicate how the nodes (layers) are connected. The chromosome
also contains a set of global hyperparameters applicable to the en-
tire network (such as learning rate, training algorithm, and data
preprocessing).

As summarized in Algorithm 1, two populations of modules and
blueprints are evolved separately using mutation and crossover
operators of NEAT. The blueprint chromosome (also known as an
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individual) is a graph where each node contains a pointer to a par-
ticular module species. In turn, each module chromosome is a graph
that represents a small DNN. During fitness evaluation, the modules
and blueprints are combined to create a large assembled network.
For each blueprint chromosome, each node in the blueprint’s graph
is replaced with a module chosen randomly from the species to
which that node points. If multiple blueprint nodes point to the
same module species, then the same module is used in all of them.
After the nodes in the blueprint have been replaced, the individual
is converted into a DNN. This entire process for assembling the
network is visualized in Figure 2.

The assembled networks are evaluated by first letting the net-
works learn on a training dataset for the task and then measuring
their performance with an unseen validation set. The fitnesses, i.e.
validation performance, of the assembled networks are attributed
back to blueprints and modules as the average fitness of all the as-
sembled networks containing that blueprint or module. This scheme
reduces evaluation noise and allows blueprints or modules to be
preserved into the next generation even if they be occasionally
included in a poorly performing network. After CoDeepNEAT fin-
ishes running, the best evolved network is trained until convergence
and evaluated on another holdout testing set.

3.2 System Layer
One of the main challenges in using CoDeepNEAT to evolve the
architecture and hyperparameters of DNNs is the computational
power required to evaluate the networks. However, because evolu-
tion is a parallel search method, the evaluation of individuals in the
population every generation can be distributed over hundreds of
worker machines, each equipped with a dedicated GPU. For most
of the experiments described in this paper, the workers are GPU
equipped machines running on Microsoft Azure, a popular platform
for cloud computing [6].

To this end, the system layer of LEAF uses the API called the
completion service that is part of an open-source package called
StudioML [9]. First, the algorithm layer sends networks ready for
fitness evaluation in the form of Keras JSON to the system layer
server node. Next, the server node submits the networks to the
completion service. They are pushed onto a queue (buffer) and each
available worker node pulls a single network from the queue to
train. After training is finished, fitness is calculated for the network
and the information is immediately returned to the server. The
results are returned one at a time and without any order guarantee
through a separate return queue. By using the completion service to
parallelize evaluations, thousands of candidate networks are trained
in a matter of days, thus making architecture search tractable.

3.3 Problem-Domain Layer
The problem-domain layer solves the three tasks mentioned earlier,
i.e. optimization of hyperparameters, architecture, and network
complexity, using CoDeepNEAT is a starting point.

Hyperparameter Optimization. By default, LEAF optimizes both
architecture and hyperparameters. To demonstrate the value of
architecture search, it is possible to configure CoDeepNEAT in
the algorithm layer to optimize hyperparameters only. In this case,
mutation and crossover of network structure and node-specific hy-
perparameters are disabled. Only the global set of hyperparameters
contained in each chromosome are optimized, as in the case in
other hyperparameter optimization methods. Hyperparameter-only

Algorithm 2 Multiobj CoDeepNEAT Module/Blueprint Ranking
1. Given population of modules/blueprints, evaluated primary and
secondary objectives (X and Y )
2. For each species Si during every generation:

3. Create new empty species Ŝi
4. While Si is not empty

5. Determine Pareto front of Si by passing Xi and Yi to
Alg. 3
6. Remove individuals in Pareto front of Si and add to Ŝi

7. Replace Si with Ŝi
8. Truncate Ŝi by removing the last fraction Fl
8. Generate new individuals using mutation/crossover
9. Add new individuals to Ŝi , proceed as normal

Algorithm 3 Multiobj CoDeepNEAT Pareto Front Calculation
1. Given list of individuals I , and corresponding objective fitnesses
X and Y
2. Sort I in descending order by first objective fitnesses X
3. Create new Pareto front PF with first individual I0
4. For each individual Ii , i > 0

5. If Yi is greater than the Yj , where Ij is last individual in PF
6. Append Ii to PF

7. Sort PF in descending order by second objective Y (Optional)

CoDeepNEAT is very similar to a conventional genetic algorithm
in that there is elitist selection and the hyperparameters undergo
uniform mutation and crossover. However, it still has NEAT’s spe-
ciation mechanism, which protects new and innovative hyperpa-
rameters by grouping them into subpopulations.

Architecture Search. LEAF directly utilizes standard CoDeepNEAT
to perform architecture search in simpler domains such as single-
task classification. However, LEAF can also be used to search for
DNN architectures for multitask learning (MTL). The foundation
is the soft-ordering multitask architecture [34] where each level of
a fixed linear DNN consists of a fixed number of modules. These
modules are then used to a different degree for the different tasks.
LEAF extends this MTL architecture by coevolving both the module
architectures and the blueprint (routing between the modules) of
the DNN [30].

DNN Complexity Minimization with Multiobjective Search. In ad-
dition to adapting CoDeepNEAT to multiple tasks, LEAF also ex-
tends it to multiple objectives. In a single-objective evolutionary
algorithm, elitism is applied to both the blueprint and the mod-
ule populations. The top fraction Fl of the individuals within each
species is passed on to the next generation as in single-objective
optimization. This fraction is based simply on ranking by fitness.
In the multiobjective version of CoDeepNEAT, the ranking is com-
puted from successive Pareto fronts [17, 54] generated from the
primary and secondary objectives.

Algorithm 2 details this calculation for the blueprints and mod-
ules; assembled networks are also ranked similarly. Algorithm 3
shows how the Pareto front, which is necessary for ranking, is
calculated given a group of individuals that have been evaluated
for each objective. There is also an optional configuration param-
eter for multiobjective CoDeepNEAT that allows the individuals
within each Pareto front to be sorted and ranked with respect to
the secondary objective instead of the primary one. Although the
primary objective, i.e performance, is usually more important, this
parameter can be used to emphasize the secondary objective more,
if necessary for a particular domain.
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Thus, multiobjective CoDeepNEAT can be used to maximize
the performance and minimize the complexity of the evolved net-
works simultaneously. While performance is usually measured as
the loss on the unseen set of samples, there are many ways to
characterize how complex a DNN is. They include the number of
parameters, the number of floating point operations (FLOPS), and
the training/inference time of the network. The most commonly
used metric is number of parameters because other metrics can
change depending on the deep learning library implementation
and performance of the hardware. In addition, this metric is be-
coming increasingly important in mobile applications as mobile
devices are highly constrained in terms of memory and require
networks with as high performance per parameter ratio as possible
[25]. Thus, number of parameters is used as the secondary objective
for multiobjective CoDeepNEAT in the experiments in the follow-
ing section. Although the number of parameters can vary widely
across architectures, such variance does not pose a problem for
multiobjective CoDeepNEAT since it only cares about the relative
rankings between different objective values and no scaling of the
secondary objective is required.

4 EXPERIMENTAL RESULTS
LEAF’s ability to democratize AI, improve the state-of-the-art, and
minimize solutions is verified experimentally on two difficult real-
world domains: (1)Wikipedia comment toxicity classification and (2)
Chest X-rays multitask image classification. The performance and
efficiency of LEAF are compared against existing AutoML systems.

4.1 Wikipedia Comment Toxicity
Classification Domain

Wikipedia is one of the largest encyclopedias that is publicly avail-
able online, with over 5 million written articles for the English
language alone. Unlike traditional encyclopedias, Wikipedia can
be edited by any user who registers an account. As a result, in the
discussion section for some articles, there are often vitriolic or hate-
ful comments that are directed at other users. These comments are
commonly referred to as “toxic" and it has become increasingly im-
portant to detect toxic comments and remove them. The Wikipedia
Detox dataset (Wikidetox) is a collection of 160K example com-
ments that are divided into 93K training, 31K validation, and 31K
testing examples [7]. The labels for the comments are generated by
humans using crowd-sourcing methods and contain four different
categories for toxic comments. However, following previous work
[15], all toxic comment categories are combined, thus creating a
binary classification problem. The dataset is also unbalanced with
only about 9.6% of the comments actually being labeled as toxic.

LEAF was configured to use standard CoDeepNEAT to search for
well performing architectures in this domain. The search space for
these architectures was defined using recurrent (LSTM) layers as
the basic building block. Since comments are essentially an ordered
list of words, recurrent layers (having been shown to be effective at
processing sequential data [36]) were a natural choice. In order for
the words to be given as input into a recurrent network, they must
be converted into an appropriate vector representation first. Before
given as input to the network, the comments were preprocessed
using FastText, a recently introduced method for generating word
embeddings [12] that improves upon the more commonly used
Word2Vec [37]. Each evolved DNN was trained for three epochs
and the classification accuracy on the testing set was returned

as the fitness. Preliminary experiments showed that three epochs
of training was enough for the network performance to converge.
Thus, unlike vision domains such as Chest X-rays, there was no need
for an extra step after evolution where the best evolved network
was trained extensively from scratch. The training and evaluation
of networks at every generation were distributed over 100 worker
machines. For more information regarding evolution configuration
and search space explored, refer to Tables 2 and 3, respectively.

The Wikidetox domain was part of a Kaggle challenge, and as
a result, there already exists several hand-designed networks for
the domain [4]. Furthermore, due to the relative speed at which
networks can be trained on this dataset, it was practical to evaluate
hyperparameter optimization methods from companies such as Mi-
crosoft, Google, and MOE on this dataset. Figure 3 shows a compar-
ison of LEAF architecture search against several other approaches.
The first one is the baseline network from the Kaggle competition,
illustrating performance that a naive user can expect by applying
a standard architecture to a new problem. After spending just 35
CPU hours, LEAF found architectures that exceed that performance.
The next three comparisons illustrate the power of LEAF against
other AutoML systems. After about 180 hrs, it exceeded the per-
formance of Google AutoML’s text classifier optimization [1] with
default compute resources. After about 1000 hrs, LEAF surpassed
Microsoft’s TLC library for model pipeline optimization [10], and
after 2000 hrs, it exceeded MOE, a Bayesian optimization library [5]
(both libraries used enough compute resources for the performance
to plateau). The LEAF hyperparameter-only version performed
slightly better than MOE, demonstrating the power of evolution
against other optimization approaches. Finally, if the user is willing
to spend about 9000 hrs of CPU time on this problem, the result is
state-of-the-art performance. At that point, LEAF discovered archi-
tectures that exceed the performance of Kaggle competition winner,
i.e. improve upon the best known hand-design. The performance
gap between this result and the hyperparameter-only version of
LEAF is also important: it shows the value added by optimizing net-
work architectures, demonstrating that it is an essential ingredient
in improving the state-of-the-art.

What is interesting about LEAF is that there are clear trade-offs
between the amount of training time/money used and the quality
of the results. Depending on the budget available, the user running
LEAF can stop earlier to get results competitive with existing ap-
proaches (such as TLC or Google AutomL) or run it to convergence
to get the best possible results. If the user is willing to spend more
compute, increasingly more powerful architectures are obtained.
This kind of flexibility demonstrates that LEAF is not only a tool
for improving AI, but also for democratizing AI.

4.2 Chest X-rays Multitask Image Classification
Chest X-rays classification is a recently introduced MTL bench-
mark [41, 50]. The dataset is composed of 112,120 high resolution
frontal chest X-ray images, and the images are labeled with one or
more of 14 different diseases, or no diseases at all. The multi-label
nature of the dataset naturally lends to an MTL setup where each
disease is an individual binary classification task. Past approaches
generally apply the classical MTL DNN architecture [50] and the
current state-of-the-art approach uses a slightly modified version
of Densenet [41], a widely used, hand-designed architecture that
is competitive with the state-of-the-art on the Imagenet domain
[26]. The images are divided into 70% training, 10% validation, and
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Figure 3: A comparison of LEAF in the Wikidetox domain against the networks discovered via several commercially available
methods, including Keras, Google AutoML, MSFT TLC, and MOE, as well as the top human-designed network in the Kaggle
comparison. The y-axis shows the best best fitness (i.e. accuracy) achieved so far, while the x-axes shows the generations, total
training time, and total amount of money spent on cloud compute. As the plot shows, LEAF is gradually able to discover better
networks, eventually finding one in the 40th generation that outperforms all other approaches.

20% testing. The metric used to evaluate the performance of the
network is the average area under the ROC curve for all the tasks
(AUROC). Although the actual images are larger, all approaches
(including LEAF) preprocessed the images to be 224 × 224 pixels,
the same input size used by many Imagenet DNN architectures.

Since Chest X-rays is a multitask dataset, LEAF was configured
to use the MTL variant of CoDeepNEAT to evolve network architec-
tures. The search space for these architectures was designed around
2D convolutional layers and includes skip connections seen in net-
works such as ResNet [22]. For fitness evaluations, all networks
were trained using Adam [28] for eight epochs. After training was
completed, AUROC was computed over all images in the valida-
tion set and returned as the fitness. No data augmentation was
performed during training and evaluation in evolution, but the im-
ages were normalized using the mean and variance statistics from
the Imagenet dataset. The average time for training was usually
around 3-4 hours depending on the network size, although for some
larger networks the training time exceeded 12 hours. Like in the
Wikidetox domain, the training and evaluation were parallelized
over 100 worker machines. For more information regarding evolu-
tion configuration and search space explored, refer to Tables 2 and
3, respectively.

After evolution converged, the best evolved network was trained
for an increased number of epochs using the ADAM optimizer [28].
As with other approaches to neural architecture search [42, 55], the
model augmentation method was used, where the number of filters
of each convolutional layer was increased. Data augmentation was
also applied to the images during every epoch of training, including
random horizontal flips, translations, and rotations. The learning
rate was dynamically adjusted downward based on the validation

Algorithm Test AUROC (%)

1. Wang et al. (2017) [50] 73.8
2. CheXNet (2017) [41] 84.4
3. Google AutoML (2018) [1] 79.7

4. LEAF 84.3

Table 1: Performance on Chest X-rays testing set for hand-
designed architectures and for networks that were evolved
using Google AutoML and LEAF. LEAF improves signifi-
cantly over Google AutoML and achieves performance virtu-
ally identically to the best hand-designed DNN, demonstrat-
ing state-of-the-art results in a task that requires very large
networks.

AUROC every epoch and sometimes reset back to its original value
if the validation performance plateaued. After training was com-
plete, the testing set images were evaluated 20 times with data
augmentation enabled and the network outputs were averaged to
form the final prediction result.

Table 1 compares the performance of the best evolved networks
with existing approaches that use hand-designed network architec-
tures on a holdout testing set of images. These include results from
the authors who originally introduced the Chest X-rays dataset [50]
and also CheXNet [41], which is the currently published state-of-
the-art in this task. For comparison with other AutoML systems,
results from Google AutoML [1] are also listed. Google AutoML
was set to optimize a vision task using a preset time of 24 hours
(the higher of the two time limits available to the user), with an
unknown amount of compute and number of worker machines. Due
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(a) Generation 10
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(b) Generation 20
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(c) Generation 30
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(d) Generation 40
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(e) Generation 50
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(f) Generation 60

Figure 4: A comparison of Pareto fronts generated by LEAF using single-objective (green) and multiobjective (blue) CoDeep-
NEAT at various generations. The x-axis shows number of parameters (secondary objective) and the y-axis shows AUROC
fitness (primary objective). The Pareto front for multiobjective LEAF dominates over the single objective Pareto front. In other
words,multiobjective LEAF discovered trade-offs between complexity and performance that are always better than those found
by standard, single-objective LEAF. Multiobjective LEAF not only found architectures with state-of-the-art performance, but
also networks that are smaller and therefore more practical.

to the size of the domain, it was not practical to evaluate Chest X-
rays with other AutoML methods. The performance of best network
discovered by LEAF matches that of the human designed CheXNet.
LEAF is also able to exceed the performance of Google AutoML by a
large margin of nearly 4 AUROC points. These results demonstrate
that state-of-the-art results are possible to achieve even in domains
that require large, sophisticated networks.

An interesting question then is: can LEAF also minimize the size
of these networks without sacrificing much in performance? Inter-
estingly, when LEAF used the multiobjective extension of CoDeep-
NEAT (multiobjective LEAF) to maximize fitness and minimize
network size, LEAF actually converged faster during evolution to
the same final fitness. As expected, multiobjective LEAF was also
able to discover networks with fewer parameters. As shown in
Figure 4, the Pareto front generated during evolution by multiobjec-
tive LEAF (blue) dominated that of single-objective LEAF (green)
when compared at the same generations during evolution. Although
single-objective LEAF used standard CoDeepNEAT, it was possible
to generate a Pareto front by giving the primary and secondary
objective values of all the networks discovered in past generations
to Algorithm 3. The Pareto front for multiobjective LEAF was also
created the same way.

Interestingly, multiobjective LEAF discovered good networks in
multiple phases. In generation 10, networks found by these two
approaches have similar average complexity but those evolved by
multiobjective LEAF have much higher average fitness. This situa-
tion changes later in evolution and by generation 40, the average
complexity of the networks discovered by multiobjective LEAF is
noticeably lower than that of single-objective LEAF, but the gap in
average fitness between them has also narrowed. Multiobjective
LEAF first tried to optimize for the first objective (fitness) and only
when fitness was starting to converge, did it try to improve the

second objective (complexity). In other words, multiobjective LEAF
favored progress in the metric that was easiest to improve upon at
the moment and did not get stuck; it would try to optimize another
objective if no progress was made on the current one.

Visualizations of selected networks evolved by multiobjective
LEAF are shown in Figure 5. LEAF was able to discover a very
powerful network (Figure 5b) that achieved 77% AUROC after only
eight epochs of training. This network has 125K parameters and is
already much smaller than networks with similar fitness discovered
with single-objective LEAF. Furthermore, multiobjective LEAF was
able to discover an even smaller network (Figure 5a) with only
56K parameters and a fitness of 74% AUROC after eight epochs
of training. The main difference between the smaller and larger
network is that the smaller one uses a particularly complex module
architecture (Figure 5c) only two times within its blueprint while the
larger network uses the same module four times. This result shows
how a secondary objective can be used to bias the search towards
smaller architectures without sacrificing much of the performance.

5 DISCUSSION
The results for LEAF in the Wikidetox domain show that an evo-
lutionary approach to optimizing deep neural networks is feasible.
It is possible to improve over a naive starting point with very lit-
tle effort and to beat the existing state-of-the-art of both AutoML
systems and hand-design with more effort. Although a significant
amount of compute is needed to train thousands of neural networks,
it is promising that the results can be improved simply by running
LEAF longer and by spending more on compute. This feature is very
useful in a commercial setting since it gives the user flexibility to
find optimal trade-offs between resources spent and the quality of
the results. With computational power becoming cheaper and more
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(a) 56K network (b) 125K network

(c) Module
used by both
networks

Figure 5: Visualizations of networks with different complex-
ity discovered by multiobjective LEAF. The performance of
the smaller 56K network (Figure 5a) is nearly as good as that
of the larger 125K network (Figure 5b). The smaller network
uses only two instances of themodule architecture shown in
Figure 5c while the larger network uses four instances of the
samemodule. These two networks show that multiobjective
LEAF is able to find good trade-offs between two conflicting
objectives by cleverly using modules.

available in the future, significantly better results are expected to
be obtained. Not all the approaches can put such power to good
use, but evolutionary AutoML can.

The experiments with LEAF show that multiobjective optimiza-
tion is effective in discovering networks that trade-off multiple
metrics. As seen in the Pareto fronts of Figure 4, the networks dis-
covered by multiobjective LEAF dominate those evolved by single-
objective LEAF with respect to the complexity and fitness metrics
in almost every generation. More surprisingly, multiobjective LEAF
also maintains a higher average fitness with each generation. This
finding suggests that minimizing network complexity produces a
regularization effect that also improves the generalization of the
network. This effect may be due to the fact that networks evolved by
multiobjective LEAF reuse modules more often when compared to
single-objective LEAF; extensive module reuse has been shown to
improve performance in many hand-designed architectures [22, 48].

In addition to the three goals of evolutionary AutoML demon-
strated in this paper, a fourth one is to take advantage of multiple
related datasets. As shown in prior work [30], even when there
is little data to train a DNN in a particular task, other tasks in a
multitask setting can help achieve good performance. Evolutionary
AutoML thus forms a framework for utilizing DNNs in domains
that otherwise would be impractical due to lack of data.

6 CONCLUSION
This paper showed that LEAF can outperform existing state-of-the-
art AutoML systems and the best hand designed solutions. The
hyperparameters, components, and topology of the architecture
can all be optimized simultaneously to fit the requirements of the

task, resulting in superior performance. LEAF achieves such results
even if the user has little domain knowledge and provides a naive
starting point, thus democratizing AI. With LEAF, it is also possible
to optimize other aspects of the architecture at the same time, such
as size, making it more likely that the solutions discovered are useful
in practice.

The biggest impact of automated design frameworks such as
LEAF is that it makes new and unexpected applications of deep
learning possible in vision, speech, language, robotics, and other
areas. In the long term, hand-design of algorithms and DNNsmay be
fully replaced by more sophisticated, general-purpose automated
systems to aid scientists in their research or to aid engineers in
designing AI-enabled products.

APPENDIX
Evolution parameter Value

Wikidetox domain

Module population size 56
Add module node prob 0.05
Add module connection prob 0.05
Module species size 4
Blueprint population size 22
Add blueprint node prob 0.05
Add blueprint connection prob 0.05
Blueprint species size 1
Assembled population size 100

Chest X-rays domain

Module population size 56
Add module node prob 0.08
Add module connection prob 0.08
Module species size 4
Blueprint population size 22
Add blueprint node prob 0.16
Add blueprint connection prob 0.12
Blueprint species size 1
Assembled population size 100

Table 2: Evolution configuration for the Wikidetox and
Chest X-rays domains.

Search space parameter Range

Wikidetox domain

Layer types [Conv1D, LSTM, GRU, Dropout]
Layer width [64, 192]
Kernel Size [1, 3, 5, 7]
Activation Function [ReLU, Linear, ELU, SeLU]
Weight Initializer [Glorot, He]
Dropout Rate [0, 0.5]
Weight Decay [1e-9, 1e-3]
Minimum pooling layers 5
Weight sharing between layers False

Chest X-rays domain

Layer types [Conv2D, Dropout]
Layer width [16, 64]
Kernel Size [1, 3]
Activation Function [ReLU, Linear, ELU, SeLU]
Weight Initializer [Glorot, He]
Dropout Rate [0, 0.7]
Weight Decay [1e-9, 1e-3]
Minimum pooling layers 4
Weight sharing between layers True

Table 3: Search space explored for the Wikidetox and Chest
X-rays domains.
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