
Measure-Theoretic Evolutionary Annealing
Alan J Lockett

Department of Computer Science
University of Texas
Austin, Texas, USA

Email: alockett@cs.utexas.edu

Risto Miikkulainen
Department of Computer Science

University of Texas
Austin, Texas, USA

Email: risto@cs.utexas.edu

Abstract—There is a deep connection between simulated an-
nealing and genetic algorithms with proportional selection. Evo-
lutionary annealing is a novel evolutionary algorithm that makes
this connection explicit, resulting in an evolutionary optimization
method that can be viewed either as simulated annealing with
improved sampling or as a non-Markovian selection mechanism
for genetic algorithms with selection over all prior populations.
A martingale-based analysis shows that evolutionary annealing
is asymptotically convergent and this analysis leads to heuristics
for setting learning parameters to optimize the convergence rate.
In this work and in parallel work evolutionary annealing is
shown to converge faster than other evolutionary algorithms on
several benchmark problems, establishing a promising foundation
for future theoretical and experimental research into algorithms
based on evolutionary annealing.

I. INTRODUCTION

Genetic algorithms typically operate in a Markov fashion,
with the population for each generation constructed stochasti-
cally from the prior population only. As a result, genetic algo-
rithms can discover and then forget high quality regions within
the search domain. By forgetting prior generations regardless
of quality, the algorithm can fail to exploit crucial information,
resulting in suboptimal performance. This problem can be alle-
viated by selecting individuals for reproduction over the entire
pool of previously observed solutions. However, a genetic
algorithm with blind non-Markovian selection can become
trapped by local optima early on. This issue can be mitigated
by combining genetic algorithms and simulated annealing in a
novel manner to produce an evoutionary algorithm that solidly
outperforms both genetic algorithms and simulated annealing.

This paper proposes evolutionary annealing, a global opti-
mization algorithm for arbitrary measure spaces that can be
alternately viewed as a genetic algorithm with non-Markovian
selection or as a method of performing simulated anneal-
ing without the Metropolis algorithm. Evolutionary annealing
introduces a new annealed selection operator, exploiting a
connection between the average effect of proportional se-
lection and the annealed Boltzmann distributions used in
simulated annealing. Although many genetic algorithms have
previously employed the Boltzmann distribution for selection
(1; 2; 3), REA is distinct from these approaches in that it
can select any member of any prior population. Evolutionary
annealing is distantly related to Estimation of Distribution
Algorithms (EDAs), since it builds a global model of the
annealing distributions for the fitness function (4; 5). However,

whereas EDAs build models based solely on the best members
of the immediately prior generation, evolutionary annealing
maintains a model based on the entire history of observation.

Theoretically, evolutionary annealing converges asymptot-
ically to the true global optima of the fitness function. The
proof is given in Section IV-A. Experimentally, evolutionary
annealing converges quickly on a bank of standard bench-
marks. This paper includes results for six standard benchmark
problems in Section V. These benchmarks include multi-
modal and non-separable problems that are difficult for many
optimization methods. However, based on its efficient sam-
pling, evolutionary annealing performs well in a comparison
with Differential Evolution (DE), Correlated Matrix Adaption
Evolution Strategies (ES), and Particle Swarm Optimization
(PSO). In parallel work, another variant of evolutionary an-
nealing has also been shown to perform well against a wider
bank of competitors (6).

II. BACKGROUND

Before introducing evolutionary annealing, some back-
ground in simulated annealing is presented, followed by a short
discussion of the theory of proportional selection in genetic
algorithms that motivates the global selection mechanism of
evolutionary annealing.

A. Simulated Annealing

Simulated annealing is a general optimization algorithm that
employs properties of statistical mechanics to locate minima
of a given fitness function (7; 8). At the core of the simulated
annealing algorithm is the Boltzmann distribution. At time n,
simulated annealing samples from a distribution given by

Afn (dx) =
1

Zn
exp

(
−f(x)

Tn

)
dx, (1)

where f is the fitness function, Zn is a normalizing factor
known as the partition function, and Tn is a sequence of
temperatures with Tn → 0. The sequence Tn is known as
the cooling schedule. The distribution Afn will be referred
to as an annealing distribution in this paper. Simulated an-
nealing samples from Afn repeatedly using the Metropolis
algorithm (9; 10). The process begins with a proposed solution
x. At each time step, a proposal distribution Q is used
to sample xn. The proposed solution x is replaced with
xn with probability exp (−max {0, f(x)− f(xn)} /Tn). For

In Proceedings of the 2011 IEEE Congress on Evolutionary Computation 2011.

each fixed temperature Tn the algorithm will converge to a
sample from Afn. As n→∞, Afn converges in probability to
a distribution that samples directly from the optimal points of
f (7).

Subject to conditions on the cooling schedule, simulated an-
nealing can be shown to converge asymptotically to the global
optima of the fitness function (11; 12). For combinatorial
problems, Hajek showed that simulated annealing converges
if the cooling schedule is set according to Tn ∝ 1/ log n (11).
In practice, simulated annealing has been used effectively
in several science and engineering problems. However, its
sensitivity to the proposal distribution and the cooling schedule
means that it is not a good fit for all optimization problems.

Surprisingly, traditional genetic algorithms are connected
with simulated annealing through an analysis of the average
performance of a genetic algorithm with proportional selec-
tion. This connection is exposed by trivial manipulations of a
previous result of Mühlenbein and Mahnig (3); the details are
discussed next.

B. Expected Proportional Selection

Many genetic algorithms employ proportional selection,
where individuals in the prior population are selected pro-
portionally to their observed fitness. Much like simulated
annealing, proportional selection sharpens the fitness function
implicitly with each generation, so that on averaging over
population trajectories the selection operator asymptotically
places probability one on the optima of the fitness function (3).
The following argument for discrete spaces is derived from
Mühlenbein and Mahnig; analogues to this result hold in
arbitrary measure spaces. For the purposes of this section, the
goal is to maximize f , a positive fitness function.

Proportional selection at the nth time step is given by
Snf (x) ∝ f(x)Nn−1

x , where Snf (x) is the probability of
selecting x at time n, and Nn

x is a random variable indicating
the number of copies of the solution x in the population at
time n. Taking the expected value over Nn

x ,

E
[
Snf (x)

]
∝ f(x)E

[
Nn−1
x

]
. (2)

The expected value on the left is also a probability distribution
over x and therefore a selection rule, here termed expected pro-
portional selection. It is possible to imagine an evolutionary
algorithm where each successive population is sampled from
just this rule. This algorithm is a one-stage, selection-only
genetic algorithm; because expected proportional selection
averages over all individuals, no variation is required.

In such an algorithm, if the initial population is selected
uniformly at random (assuming this is possible), then E

[
N0
x

]
is a constant, so

E
[
S1f (x)

]
∝ f(x). (3)

By definition, E[Snf (x)] = E[Nn
x]/K where K is the popula-

tion size, since Nn
x /K is just the proportion of the population

taking the value x. Applying this fact to the recursion in
Equation 2 yields E[Snf (x)] ∝ f(x)n. Thus expected pro-
portional selection sharpens the fitness function. Introducing

g(x) ≡ − log (f(x)),

E
[
Snf (x)

]
∝ exp (−g(x))

n

= exp

(
− 1

n−1
g(x)

)
(4)

Comparing Equation 1 to Equation 4, expected proportional
selection is found to have an annealing distribution on − log f
with cooling schedule Tn = n−1. Since the logarithm is
monotonic, the maxima of f are the minima of g.

Expected proportional selection is not a feasible selection
rule, because it requires total knowledge of the fitness function
a priori. If such knowledge were possible, there would be no
need for evolutionary computation; the optima would already
be known. Genetic algorithms with proportional selection can
be viewed as an approximation of this selection rule.

Evolutionary annealing exploits the theoretical relationship
between simulated annealing and genetic algorithms to create a
hybridized algorithm that merges qualities of both algorithms,
as is described next.

III. MEASURE-THEORETIC EVOLUTIONARY ANNEALING

This section defines the evolutionary annealing algorithm.
The following notation is used throughout. Let (X,F) be an
arbitrary measure space, and let λ be a finite measure on
(X,F). Let f : X → R be a fitness function which is to be
minimized, and assume that f has all necessary integrability
properties required by the formulae that follow. The notation
(Pn) will represent a stochastic population process, that
is, a sequence of populations generated by an evolutionary
algorithm. Each population Pn contains a fixed number of
individuals, denoted by Pn =

(
P kn
)K
k=1

. The set An represents
the set of all individuals up to time n, An =

⋃
m≤n,k

{
P km
}

.
With these definitions, the basic algorithm can be defined.

A. Basic Algorithm

Evolutionary annealing consists of selection and variation
phases. The population Pn+1 is sampled one individual at a
time in these two stages. In the selection phase, an element
a ∈ An is selected with probability

pn (a) =
ξn

cn (a)
exp

(
−f(a)

Tn

)
, (5)

where Tn is a cooling schedule, ξn is a normalizing factor,
and cn (a) is a weight intended to approximate the size of a
region of X represented by the individual a, discussed below.

For the variation phase, evolutionary annealing requires a
family of probability distributions {νxn}x∈X used to mutate
selected points, so that given a selected point x, νxn is used
to vary x at time n. The choice of mutation distributions is
essentially arbitrary, although the convergence theorems that
follow will restrict this choice. In Euclidean space, Gaussians
can be used, centered at x and with variation σn. In binary
spaces, individual bits can be flipped with a probability
dependent on n. The particular mutation distributions should
be chosen based on the needs of the problem at hand. Some

results for a specific instantiation of evolutionary annealing
with real vectors will be discussed in Section V.

Once an individual a ∈ An has been selected with proba-
bility pn (a), then that individual is mutated according to νan
in order to generate a new member of the population. That
is, each individual in the population at time n+ 1 is sampled
according to

P kn ∼
∑
a∈An

pn(a)νan (dx) . (6)

Thus evolutionary annealing samples its populations from
a sequence of mixture distributions with one mixing point
located at each individual from prior populations. In this way,
the selection is non-Markovian; the selected individual could
come from any previous generation. The mixture probabilities
pn(a) are chosen according to the annealing formula in
Equation 5. Intuitively, if the temperature is fixed at a constant,
as the number of mixing points increases and the variance of
the mutation distribution decreases, the mixture distribution
in Equation 6 converges to the annealing distribution Afn in
Equation 1. It is commonly known that mixtures of Gaussians
can model any sufficiently smooth distribution arbitrarily well
if enough mixing points are used. It is also true that mixture
distributions in general can model any probability measure
arbitrarily well subject to certain conditions. A specific proof
of convergence for evolutionary annealing is offered in Sec-
tion IV-A; Theorem IV.1 states that evolutionary annealing
converges in probability to the optima of f . Therefore Pn is
successively sampled from better and better approximations
to Afn, and as n → ∞, the population sequence Pn will
increasingly focus on the optima of f . The rate of convergence
will be taken up in Section IV-B.

A high-level algorithm for evolutionary annealing is shown
in Algorithm 1. The algorithm articulates the process for
sampling populations as previously described. Assuming that
sampling νan and computing cn (a) do not add to the complex-
ity, this algorithm has performance O

(
N2K2

)
. By storing the

points in a database, it is possible to sample Pn in O (K log n)
time. The most expensive elements computationally are the
values of pn (a), which must be recomputed with each gener-
ation.

Evolutionary annealing at this level of abstraction has two
parameters in addition to the choice of mutation distribution:
the cooling schedule and the region weight cn(a). In light
of (11), a default choice for the cooling schedule is given
by T−1n = η log n. Here η is a learning rate that scales the
fitness function and thereby controls the aggressiveness of
selection. A high learning rate focuses selection on the few
best individuals and may restrict exploration of the space. A
low learning rate allows promiscuous selection, slowing down
refinement of previously discovered solutions but increasing
the probability of escaping a local minimum. Again follow-
ing (11), a possible value for η is 1/d where d is the largest
depth of a local minima relative to its surroundings in the
fitness landscape. In more complex spaces, different cooling
schedules could be considered. There may also be a benefit to

Algorithm 1 Algorithm to Approximate a Fitness Measure
N , the number of generations
K, sample points (population size) per generation
P k1 ∼ λ/λ(X), the initial population
A0 ← ∅, all points from all generations
for n← 1 to N do
An ←

⋃
k P

k
n ∪An−1

ξn ← 0
for m← 1 to n do

for k ← 1 to K do
Compute cn

(
P km
)
, Tn

pn
(
P km
)
← cn

(
P km
)

exp
(
− f(P

k
m)

Tn

)
zn (a)← ξn + pn

(
P km
)

ξn ← ξn + zn (a)
end for

end for
for k ← 1 to K do
r ← ξn ×Uniform(0, 1)
y ← argmina∈An {zn (a) : r < zn (a)}
P kn+1 ← a sample from νyn

end for
end for

linking the variance of the mutation distribution to the cooling
schedule, so that as the probability of selecting the current
best individual decreases, the variance also decreases to enable
refined exploration of the immediate region around the current
best. The effect of parameter settings is explored further in
Section IV-B.

The region weight cn (a) is present in Equation 5 to avoid
a particular scenario of premature convergence. Once a good
solution is discovered, Evolutionary annealing will devote
increasing resources to exploring the neighborhood of that
point. If these points are also good, then the probability of
selecting more points in the same region will increase in a
feedback loop. Within a few generations, almost all points
selected will come from the immediate environment of these
good points. If there is a local minimum in the vicinity,
evolutionary annealing would likely become entrapped in that
region. The region weight cn (a) is intended to serve as
a measure of how many individuals have been previously
sampled in the region surrounding the point a. If the search
space X is a metric space, then cn(a) can simply count
the number of other points in An contained within a small
radius of a. For theoretical reasons relating to convergence,
the radius used should decrease to zero as n → ∞. For
vector spaces such as Rd, hypercubes are more efficient to
compute. By dividing out the region weight in Equation 5,
selection remains proportional to fitness rather than becoming
inordinately sensitive to the particular sequence of sampled
populations. The region weight also plays an important role
in the proof of global convergence.

In non-metric spaces it remains to be seen how cn(a)
should be set. It is also questionable whether a counting im-

plementation can be efficiently computed, especially in high-
dimensional spaces. For this purpose, a partitioning approach
for setting cn(a) is described next that can be computed
efficiently in many spaces. This partitioning approach is also
an important tool for the convergence proof in Section IV-A.

B. Partitioning the Space

To demonstrate convergence of evolutionary annealing, each
of the mixing points a ∈ An will be considered representative
of a particular region of the search space X . Each successive
set An will be associated with a partition {Ean}a∈A of disjoint
sets such that X =

⋃
a∈An E

a
n. The σ-algebra F is assumed

to be rich enough to support such partitions based on any
collection of finite points in X . With such a partition, the
proper value for the region weight is cn(a) = λ (Ean)

−1.
The justification for setting cn(a) to count the number of

other points nearby as advocated in the previous paragraphs is
as follows. If a point a has a large number of nearby points at
time n, then the size of partitioned region Ean must be small,
or else it would also contain other points. If the measure λ
spreads weight evenly across the space, and if the partition
region Ean is small, its measure, λ (Ean), will be commensu-
rately small. As a consequence, the counting approximation
should only be used in spaces where the measure λ supports
this analysis; elsewhere, a partitioning approach should be
preferred. It is also important to note that while the counting
approach correctly decreases probabilities that are too high,
it nonetheless fails to increase those probabilities that are too
low, since an isolated point will have a count of 1 regardless
of how far it is from other points. So the counting approach
is biased in favor of known good points.

Algorithm 2 partitions any measure space given a function
for dividing a partition region between two separate points in
the region. A partition is represented as a binary tree, with
the root representing the entire space X and each branch
partitioning X into two sets. The algorithm is initialized with
a sequence of points {xm}Mm=0 ⊆ X to be partitioned (the
mixing points), a tree T with X as the root node, and an
assignment function k such that k(m) is the leaf node of the
tree assigned to the point xm, or ∅ if no assignment has been
made. The algorithm then loops through the mixing points,
splitting the space where necessary to ensure that each leaf
node contains exactly one mixing point. The algorithm relies
on a domain-specific subroutine, separate. At the end of
each iteration of the algorithm’s main loop, each leaf node
is assigned to exactly one mixing point. When a new mixing
point is added, separate partitions the leaf node to which it
belongs into two new leaf nodes, each containing only one
mixing point. The process of adding a single new mixing
point to the tree requires only a tree traversal, so that at
each generation, updating the partition requires O (K logNK)
time, where NK is the number of points at the N th genera-
tion. The counting approach, by contrast, requires worst case
O
(
N2K2

)
time, and therefore partitioning is potentially much

less expensive computationally.

Algorithm 2 Algorithm to Generate a Partition Based On Grid
Points
{xm}Mm=1 ⊆ X , the mixing points
T ← {X}, the partition tree
k(i)← ∅ for all i = 1, . . . ,M , node assignment function
for m← 1 to M do
N ← the leaf node in T such that xm ∈ N
if ∃j 6= m s.t. k(j) = N then
N0, N1 ← separate (xj , xm, N)
T ← T ∪ {N0, N1}
k(j)← N0, k(m)← N1

else
k(m)← N

end if
end for

In a vector space, such as Rd, the function separate
can in many cases be given explicitly. Suppose that X is
bounded above by {ui} and below by {`i} so that X has
a rectangular shape. Each node in the partition tree will
restrict the coefficient for exactly one of the basis vectors,
say j. To maintain computability, it is necessary to require
that j < M < ∞ for some M. That is, each set Ean in
the partition is defined as a hyperrectangle on finitely many
coordinates, with each step in the traversal of the partitioning
tree adding a new coordinate value for some side of the
hyperrectangle. So Ean can be represented as two vectors, ua

for the upper bounds, and `a for the lower bounds. Given
the point a ∈ X and a second point x ∈ X , Ean can be
separated as follows. Let k = argmaxi≤M |ai − xi|; k is
the index at which the rectangle Ean will be split. Suppose
ak > xk for the sake of simplicity; the opposite situation is
handled analogously. Initialize ux ← ua and `x ← `a. Then
set `ak ← 1

2 (ak − xk) + xk and uxk ← 1
2 (ak − xk) + xk. The

regions Ean+1 and Exn+1 defined by these boundary vectors are
then disjoint if the upper boundary is strict. Two vectors that
are the same in the first M coefficients cannot be distinguished
by this process, but that situation can usually be ignored. This
separation algorithm can be efficiently implemented in many
spaces of interest. The next section discusses the convergence
properties of the algorithm.

IV. CONVERGENCE PROPERTIES

Subject to a reasonable set of conditions, evolutionary
annealing with either proportional or tournament selection
converges in probability to the set of optimal points for the
fitness function. These conditions include: (1) the mutation
variance must asymptotically decrease; (2) the annealing dis-
tributions must possess quasi-differentiability properties at the
mixing points; (3) the fitness function must not be too irregular
in the immediate neighborhood of the optima; and (4) the
mutation variance and the temperature must decay slowly
enough to guarantee full exploration of the space. With these
conditions satisfied, evolutionary annealing converges to the
optima. The convergence rate for evolutionary annealing is

highly sensitive to both the cooling schedule and the variance
decay; the interaction of these parameters remains the subject
of inquiry.

In this section, the preceding concepts are made rigorous,
and a proof of convergence for evolutionary annealing is
provided, followed by a discussion of convergence rates.

A. Convergence Proof

As mentioned above, the convergence proof requires con-
ditions on the mutation variance, the annealing distributions,
and the fitness function. First, convergence requires that the
mutation distributions νan increasingly focus on the point a.

Definition 1. A sequence of probability measures {νan} is said
to be increasingly centered on a if for any decreasing sequence
of sets {Fn} such that

⋂
n Fn = {a}, νan (Fn)→ 1.

This definition is satisfied if the distributions νan have mean
a and variance decreasing to zero. Intuitively, mutation must
cease asymptotically. Also, the mutation distributions must be
well matched with the base measure λ in the sense that sets of
λ-measure zero must also have νan-measure zero. This property
is known as absolute continuity of νan with respect to λ.

The convergence proof makes use of the annealing distri-
butions with respect to the measure λ. Specifically, define

gn(x) =
exp (−f(x)/Tn)∫

X
exp (−f(x)/Tn) λ (dx)

. (7)

and note that gn is the density of an annealing distribution
generalized to the space (X,F , λ), i.e.

∫
X
gn dλ = 1. Set

g ≡ limn gn. Now since 0 < gn ≤ 1, it holds that 0 ≤ g ≤ 1.
Also, since gn is bounded,

∫
X
g dλ = limn

∫
X
gn dλ = 1,

so that g is also the λ-density of a probability distribution.
Specifically, g assigns measure zero to all non-optimal points
of f .

In order to guarantee that the mixture distributions used
by evolutionary annealing are capable of approximating gn,
it is necessary that the densities gn do not vary too quickly,
i.e., that the fitness function does not oscillate wildly between
infinitesimally close points. Formally, this concept can be
defined based on the integrals of gn on nicely shrinking sets.
Nicely shrinking sets are a vanishing sequence of sets, each
of which possesses interior points.

Definition 2. Given a sequence of sets {Ean}n∈N that shrink
nicely around a point a and a sequence of functions {gn}n∈N
on a measure space (X,F , λ) such that each gn is λ-
integrable, the neighborhood average of gn on Ean is given
by

gλn (a) ≡ λ (Ean)
−1
∫
Ean

gndλ. (8)

Definition 3. On a measure space (X,F , λ), a sequence of
λ-integrable functions gn is approximated by its neighborhood
average at a point a if for any sequence of nicely shrinking
sets {Ean}

lim sup
n

∣∣gn (a)− gλn (a)
∣∣ = 0. (9)

If the neighborhood average gλn of a sequence gn approx-
imates the values of the sequence at a point well, then the
neighborhood average can be used as a proxy for the function
at that point. Approximation by the neighborhood average
is a critical requirement for the convergence of evolutionary
annealing, but is not overly restrictive in practical terms. This
property is possessed by all continuous functions, but it is true
for many discontinuous functions as well. In fact, only fitness
functions that are chaotic at an infinitesimal scale are excluded
by this requirement.

The next set of conditions pertains to the ε-optimal sets
of f . Let f∗ be the minimal value of f , and define Xε ≡
{x : f(x) < f∗ + ε}. Xε includes all points in X that come
within ε of the optimum. If the set Xε has λ-measure zero
for small values of ε, then the optima are isolated, and
the mutation distributions for evolutionary annealing have
zero probability of proposing the optima. In that situation,
convergence is impossible.

A second pathological situation occurs when the boundary
of the set Xε is so jagged that it possesses positive λ-mass. In
this case, the boundaries of Xε can never be well approximated
by a countable sequence of estimates.

A fitness function will be called suitable when these cases
can be excluded. Additionally, suitability will be defined
to account for the required integrability and neighborhood
properties discussed above.

Definition 4. A fitness function f is termed suitable whenever
the following five conditions hold:

1) The minimum exists, i.e. f∗ > −∞.
2) The functions gn are λ-integrable.
3) The functions gn are well approximated by their neigh-

borhood average.
4) The sets Xε are F-measurable, ε ≥ 0.
5) There exists a constant γ > 0 such that for all ε ∈ (0, γ),

λ (Xε) > 0 and λ (∂Xε) = 0.

Finally, the cooling schedule and mutation variance must
decay slowly enough to guarantee full exploration of the search
space, or else the global optimum might be missed. Note
that this requirement pertains to the shape of the mutation
distributions and not just the variance. Specifically, let E ⊆ X
be an open region of the search space with positive λ-measure,
and let Ec be its complement in X . Recall that An represents
the set of all previously observed individuals at time n.
Ultimately, to fully explore the space, there must be an n such
that An ∩ E 6= ∅ for each open set E. As a technical detail,
X must be separable in order for this to be possible. Then X
has a countable dense subset. If the space is fully explored,
then An ↑ A where A is such a countable dense subset of X .
An evolutionary annealing algorithm that meets satisfies this
criterion will be termed complete.

The convergence theorem can now be stated. For conver-
gence, evolutionary annealing is assumed to use the partition-
ing method to set the region weights cn(a). The proof makes
liberal use of the partitions {Ean}.

Theorem IV.1. A complete evolutionary annealing algorithm
converges in probability to the minimal points of any suitable
fitness function provided that the mutation distributions are
increasingly centered on the mixing points.

Proof: Fix ε, δ > 0 with ε < γ. Without loss of
generality, assume λ (X) = 1; if not, λ̃ ≡ λ/λ (X) will
satisfy this equality. Let Gn(B) =

∑
a∈An pn(a)νan(B) be

the distribution generating evolutionary annealing at time n.
The desired result will follow if there exists an N such that
for n ≥ N , Gn (Xε) > 1− δ.

Define the annealing distributions An (B) =
∫
B
gn dλ, and

similarly A (B) =
∫
B
g dλ. Now because A (Xε) = 1 for all

ε, it is sufficient to prove that |Gn (Xε)−A (Xε)| < δ.
For convenience, let λan (Xε) ≡ λ (Xε ∩ Ean) /λ (Ean). De-

fine G̃n so that G̃n (Xε) =
∑
a∈An pn (a)λan (Xε). Since

νan is increasingly centered on a, for n sufficiently large,
νan (Xε \ Ean) < δ/4.

Also, because the algorithm is complete, there exists n large
enough so that either X̊ε ∩ Ean = Ean or X̊ε ∩ Ean = ∅ where
as usual X̊ε ≡ Xε \ ∂Xε. Since ε < γ, the measure of the
boundary of Xε can be ignored, and either λan (Xε) = 0 or
λan (Xε) = 1. Similarly, νan (Xε ∩ Ean) can be chosen to be
within δ/4 of either 0 or 1, since νan is increasingly centered on
a and either νan (Xε ∩ Ean) = νan (Ean) or νan (Xε ∩ Ean) = 0,
depending on whether a ∈ X̊ε. Therefore,∣∣∣Gn (Xε)− G̃n (Xε)

∣∣∣ ≤ ∑
a∈An

pn (a) |νan (Xε)− λan (Xε)|

≤
∑
a∈An

pn (a) νan (Xε \ Ean)

+
∑
a∈An

pn (a) |νan (Xε ∩ Ean)− λan (Xε)|

<
δ

4
+
δ

4
=
δ

2
. (10)

Thus |Gn (Xε)− G̃n (Xε) | < δ
2 .

Next it will be shown that |G̃n (Xε) − A (Xε) | → 0 by
using a martingale argument. Let Z ≡ g be a random variable
on (X,F , λ) and note that E (Z1Xε) = A (Xε). Let Yn ≡∑
a∈An 1Eangn (a) be a random process on the same space, so

that E (Yn1Xε) ≈ G̃n (Xε) since |pn (a)− gn (a)λ (Ean)| → 0
(recalling that cn(a) = λ (Ean)

−1).
Let {EAnn } be the filtration generated by the sequence of

partitions {Ean}. Now consider the processes generated by
conditioning on {EAnn }:

Ỹ εn = E
(
Yn1Xε | EAnn

)
=

∑
a∈An

1EanSn (a)λ (Xε ∩ Ean) , (11)

Zεn = E
(
Z1Xε | EAnn

)
=

∑
a∈An

1Ean

∫
Xε∩Ean

g dλ. (12)

Note that E(Ỹ εn) = E (Yn1Xε) and E (Zεn) = E (Z1Xε) by the
properties of conditional expectations.

It is also the case that Ỹ εn and Zεn converge together because
for η > 0

∣∣∣Zεn − Ỹ εn ∣∣∣ ≤ ∑
a∈An

1Ean

∣∣∣∣∣
∫
Xε∩Ean

g dλ− gn (a)λ (Xε ∩ Ean)

∣∣∣∣∣
=

∑
a∈An

1Ean

∣∣∣∣∣
∫
Xε∩Ean

[g (x)− gn (a)]λ (dx)

∣∣∣∣∣
≤

∑
a∈An

1Ean

[
sup
x∈Ean

∣∣gλn (x)− gn (a)
∣∣]λ (Ean)

+
∑
a∈An

1Ean

∣∣∣∣∣
∫
Xε∩Ean

[
g (x)− gλn (x)

]
λ (dx)

∣∣∣∣∣
<

∑
a∈An

1Ean

[η
2

+
η

2

]
= η. (13)

The inequalities hold because gn is approximated by its
neighborhood average at a, Xε∩Ean shrinks nicely, and gn → g
(and thus gλn → g).

Because Zεn is a Levy martingale, Zεn → E
(
Z1Xε | EA∞

)
,

and the prior result then implies that Ỹ εn → E
(
Z1Xε | EA∞

)
.

By the properties of Levy martingales, it then holds that
EỸ εn → E

(
E
(
Z1Xε | EA∞

))
= E (Z1Xε). That is,

G̃n (Xε) ≈ E (Yn1Xε) = E(Ỹ Xεn)→ E (Z1Xε) = A (Xε) .
(14)

Putting it together, for n sufficiently large,

|Gn (Xε)−A (Xε)| ≤
∣∣∣Gn (Xε)− G̃ (Xε)

∣∣∣
+
∣∣∣G̃n (Xε)−A (Xε)

∣∣∣
<

δ

2
+
δ

2
= δ, (15)

completing the proof.

In sum, this theorem shows that evolutionary annealing
is guaranteed to converge asymptotically arbitrarily close to
the minima of the fitness function. The result is stronger
than known results for simulated annealing and is generally
independent of the learning parameters. However, less can be
said regarding the rate of convergence, as will be discussed
next.

B. Convergence Rates

An examination of the proof of Theorem IV.1 shows that
there are three basic sources of approximation error: (1) the
variance of the mutation distribution, (2) the accuracy of the
neighborhood average, and (3) the speed of convergence for
the annealing distributions, due to the cooling schedule. Of
these, the variance and the cooling schedule are under the
direct control of the practitioner. Implicitly, these two factors
also control the accuracy of the neighborhood average. In order
to set the cooling schedule and variance decay to maximize
the rate of convergence, the effects of these three error sources
must be carefully considered.

The first source of error is due to the difference
|νan (Xε)− λan (Xε)|. Convergence occurs because both of
these measures νan and λan asymptotically become point
masses, the former because of the variance decay and the
latter because the mixing points eventually fill the search
space. To minimize error, these two measures should be kept
as close as possible for mixing points in the vicinity of
the optima. As the algorithm begins to focus on a small
group of optima, the partitions in that region will become
smaller, and the variance of the mutation distribution should
decrease at a similar rate. Notably, however, decreasing the
variance also reduces the probability that the global optimum
will be discovered if it has not already and if it is located
sufficiently far from the current regions of focus. Also, when
a new and better optimum is discovered after the search has
already focused on other local optima, the exploration of the
new optimum will proceed slowly if the variance has already
decayed substantially. Therefore it may make sense to scale
the variance to reflect the size of the partition region for the
mixing point being mutated. In this way, larger variances will
typically be employed in unexplored regions, whereas well
explored regions will use a narrower variance, so that νan and
λan are well-matched in general. The fact that the mixing points
eventually fill the space guarantees that a dynamic and locally
scaled variance decay schedule of this type will eventually
become increasingly centered as required.

The second source of error pertains to the accuracy of
approximating the average value of the annealing distribu-
tion by its value at the mixing points, due to the term∣∣gλn(x)− gn(a)

∣∣. This error depends strongly on the fitness
function. If the fitness function is relatively homogeneous and
does not fluctuate at different rates in different regions of the
search space, then it may be seen that this source of error
strongly reflects the mass of the partition region, λ (Ean). In a
large region, the approximation gn(a)λ (Ean) is likely to differ
more substantially from

∫
Ean
gn dλ than it would in a smaller

region. Thus this source of error can perhaps be reduced by
spreading the mixing points more evenly through the space in
order to keep the partition regions uniformly small. This goal
can be accomplished by using a high variance at the outset
to guarantee full exploration of the space. At later stages, the
use of a high variance is at odds with the need to match the
mutation distribution νan with the measure λan, and thus the first
two sources of error must be balanced and cannot be mutually
eliminated. The accuracy of the average approximation is also
affected by the cooling schedule. At high temperature, the
approximation must be more accurate because gn will vary less
over the region Ean if Tn is large. Lowering the temperature
increases this source of error by causing the function gn to
fluctuate more.

The third source of error concerns the speed of convergence
of the annealing distributions due to the difference |g − gn|.
The faster the cooling schedule takes the temperature to zero,
the faster this error will be minimized. But a fast cooling
schedule will increase the error due to the neighborhood ap-
proximation. The speed of the cooling schedule must balance

the need to minimize both the neighborhood approximation
error and the annealing convergence error.

Overall, preliminary experiments showed that a logarithmic
cooling schedule, e.g. T−1n = η log n, works well in practice.
Early results also suggest that the variance should start off
quite large and decay exponentially fast. Also, it should be an
effective approach to scale the variance locally based on the
size of the partition region for the mixing point being mutated.
The next section discusses experimental results.

V. EXPERIMENTAL VALIDATION

Evolutionary annealing can be used to search for bit strings,
real vectors, neural networks, Bayesian network structures,
game strategies, programs, state machines, and any other struc-
ture that can be embedded within a measure space. Parallel to
the theory development in this paper, specific implementations
were defined and tested for real vectors. This paper displays
results using the partitioning method for setting the region
weight described in Section III-B. For results with the counting
method in Section III-A against a larger bank of competing
algorithms, see (6).

In Euclidean space, an instantiation of evolutionary anneal-
ing, named Real-space Evolutionary Annealing (REA), was
tested on six common benchmarks: sphere, rosenbrock, ackley,
whitley, modified shekel’s foxholes, and griewank, all in five
dimensions. REA employed a logarithmic cooling schedule,
Gaussian variation, and an exponentially decaying variance
set at an initially high value. The variance decay rate and
the problem learning rates were set as described in parallel
work (6); the only difference here is that the partitioning
method was used for the region weights. For comparison,
DE, ES, and PSO were also run on the same problems. All
algorithms were run on 20 trials for 1000 generations with a
population size of 100.

The number of successful trials for all algorithms is shown
in Table V. REA was able to successfully optimize in substan-
tially many trials on all benchmarks. On shekel’s foxholes,
REA was the most successful of all the algorithms tested,
solving the problem on 7 out of 20 trials. On the other bench-
marks, REA was successful more often than either ES or PSO.
DE outperformed REA on ackley and whitley. However, REA
is designed to be easily extensible to discontinuous functions
and arbitrary measure spaces, whereas DE is not. Table V
shows the number of function evaluations to attain success.
REA converges faster than DE on most problems. Compared to
ES, REA evaluates the fitness function a comparable number
of times, but with better success rates.

Once good solutions were obtained, REA’s ability to refine
those solutions was less impressive, though still effective.
The difficulty of refinement is a result of the exponentiation
contained in the Boltzmann distribution. Under the exponent,
once solutions are within 0.01 of the optimum, all solutions
of this quality are likely to be selected roughly in equality
even at low temperatures. This defect could be addressed by
developing an annealing approach to tournament selection,

TABLE I
NUMBER OF SUCCESSFUL TRIALS (OUT OF 20, ε < 0.2)

sphere rosenbrock ackley whitley shekel griewank
REA 20 20 13 16 7 20
DE 20 20 20 20 5 20
ES 20 20 11 10 1 20
PSO 20 4 3 6 1 2

TABLE II
FUNCTION EVALUATIONS BEFORE SUCCESS (IN THOUSANDS, ε < 0.2)

sphere rosenbrock ackley whitley shekel griewank
REA 1 25 26 27 70 49
DE 2 17 62 63 80 9
ES 2 41 17 39 32 24
PSO 2 69 14 79 18 34

discussed in Future Work. See (6) for further discussion of
experimental results.

VI. FUTURE WORK

Future experimentation evolutionary annealing will focus on
training complex structures such as neural networks and game
strategies. The purpose of defining evolutionary annealing
at the level of abstraction in this paper is to provide a
means for developing new algorithms to search in high-level
spaces without having to reinvent the underlying evolutionary
apparatus from whole cloth. Evolutionary annealing provides
convergence guarantees as well as heuristics for setting learn-
ing parameters for a wide variety of search domains.

More work remains to be done in establishing the rate of
convergence for evolutionary annealing beyond the heuristics
provided in Section IV-A. For example, it is known that
maximum likelihood estimates of mixture distributions with
increasing mixing points approximate continuous distributions

at a relatively fast rate of C
(

logn
n

)0.25
(13). The distributions

employed in evolutionary annealing are not the same, but
similar performance may be hoped for on continuous fitness
functions.

Finally, basic improvements can be made to the algorithm
implementation. It may be possible to reduce the computa-
tional complexity from O(N2K2) to O(NK logNK) through
use of a tree-sampling algorithm rather than explicit updates
of pn(a) from Equation 5. Additionally, it may be possible to
develop a non-Markovian analogue to tournament selection
that works in the context of annealed selection, protecting
against the insensitivity of proportional selection to minor
fluctuation in fitness near the optima.

VII. CONCLUSION

Evolutionary annealing leverages shared aspects of simu-
lated annealing and genetic algorithms in order to produce a
hybridized evolutionary algorithm that is provably convergent
and amenable to mathematical analysis. This paper presented
a convergence proof that enables a heuristic analysis of the
convergence rates of the proposed algorithm. In parallel work,
evolutionary annealing has been implemented for real vectors
and shown to be effective at locating optima, and even more so

at finding rough approximations to the global optima with few
function evaluations. Evolutionary annealing and algorithms
derived from it are therefore an exciting new prospect for ex-
perimental and theoretical research in evolutionary algorithms.

ACKNOWLEDGMENT

The authors would like to thank Gordan Žitkovič and Jesse
Windle for their valuable advice in developing the proof
contained in this paper. This research was supported in part
by NSF under grants DBI-0939454 and IIS-0915038.

REFERENCES

[1] D. E. Goldberg, “A note on boltzmann tournament se-
lection for genetic algorithms and population-oriented
simulated annealing,” Complex Systems, vol. 4, 1995.

[2] I. Jeong and J. Lee, “Adaptive simulated annealing ge-
netic algorithm for system identification,” Engineering
Applications of Artificial Intelligence, vol. 9, no. 5, pp.
523 – 532, 1996.

[3] H. Mühlenbein and T. Mahnig, “Mathematical analysis
of evolutionary algorithms,” in Essays and Surveys in
Metaheuristics, Operations Research/Computer Science
Interface Series. Kluwer Academic Publisher, 2002,
pp. 525–556.

[4] M. Pelikan, D. Goldberg, and F. Lobo, “A survey of
optimization by building and using probabilistic models,”
Computational Optimization and Applications, vol. 21,
2002.

[5] H. Mühlenbein, T. Mahnig, and A. O. Rodriguez,
“Schemata, distributions, and graphical models in evolu-
tionary optimization,” Journal of Heuristics, vol. 5, 1999.

[6] A. Lockett and R. Miikkulainen, “Real-space evolution-
ary annealing,” in Proceedings of the 2011 Genetic and
Evolutionary Computation Conference (GECCO-2011),
2011.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Opti-
mization by simulated annealing,” Science, vol. 220, no.
4598, 1983.

[8] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,”
Statistical Science, vol. 8, no. 1, 1993.

[9] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller,
and E. Teller, “Equations of state calculations by fast
computing machines,” Journal of Chemical Physics,
vol. 21, no. 6, 1953.

[10] W. Hastings, “Monte carlo sampling methods using
markov chains and their applications,” Biometrika,
vol. 57, no. 1, 1970.

[11] B. Hajek, “Cooling schedules for optimal annealing,”
Mathematics of Operation Research, vol. 13, no. 4, 1988.

[12] R. L. Yang, “Convergence of the simulated annealing
algorithm for continuous global optimization,” Journal of
Optimization Theory and Applications, vol. 104, no. 3,
2000.

[13] C. Genovese and L. Wasserman, “Rates of convergence
for the gaussian mixture sieve,” Annals of Statistics,
vol. 28, no. 4, 2000.

