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Abstract—The performance of evolutionary algorithms has
been studied extensively, but it has been difficult to answer
many basic theoretical questions using the existing theoretical
frameworks and approaches. In this paper, the performance of
evolutionary algorithms is studied from a measure-theoretic point
of view, and a framework is offered that can address some
difficult theoretical questions in an abstract and general setting.
It is proven that the performance of continuous optimizers is in
general nonlinear and continuous for finitely determined perfor-
mance criteria. Since most common optimizers are continuous,
it follows that in general there is substantial reason to expect
that mixtures of optimization algorithms can outperform pure
algorithms on many if not most problems. The methodology
demonstrated in this paper rigorously connects performance anal-
ysis of evolutionary algorithms and other optimization methods
to functional analysis, which is expected to enable new and
important theoretical results by leveraging prior work in these
fields.

I. INTRODUCTION AND MOTIVATION

The performance of evolutionary algorithms has been stud-
ied extensively, but it has been difficult to answer many basic
theoretical questions using the existing theoretical frameworks
and approaches. This study extends the measure-theoretic
framework of Lockett and Miikkulainen [6] to account for
the analysis of optimizer performance. This treatment provides
a bridge between the mathematical analysis of evolutionary
algorithms and the well-studied theory of random variables
and stochastic processes. Using this framework, the tools
and techniques of stochastic analysis can be used directly
on evolutionary algorithms to draw broad conclusions in a
general setting. Previously, such techniques have been used
to analyze the asymptotic convergence of genetic algorithms
using Markov chains [8]. The No Free Lunch theorems for
optimization also proceed along similar lines [12, 2]. Since
such seminal results in the theory of evolutionary algorithms
have been achieved using similar principles, it is hoped that a
rigorous application of stochastic analysis to the performance
of evolutionary algorithms will also yield substantial new
insights.

This paper will introduce the optimization process, a
stochastic process representing the path of an evolutionary
algorithm through the search domain. A performance criterion
will be defined as the expectation of a random variable
depending on the optimization process and the fitness function.
It will be shown how some common performance metrics such
as the final error, success probability, and runtime are realized

in this framework. Then a theorem is presented stating that if
the performance criterion depends only on finitely many steps
of the algorithm, then the average performance of the algorithm
will vary continuously as either the algorithm or the fitness is
varied.

This final result has direct practical consequences. As
Lockett and Miikkulainen showed, many sets of evolutionary
algorithms are convex subsets of normed vector spaces, and
hence there is a line or spectrum of evolutionary algorithms
between any two fixed algorithms. This paper shows that per-
formance changes continuously and nonlinearly along this line,
leaving open the possibility that interior points on this line in
algorithm space might represent better-performing evolution-
ary algorithms than the endpoints. In fact, For example, Lehre
and Özcan [5] have already exhibited instances in which this
conjecture is borne out. They constructed pairs of algorithms
such that one of their convex combinations (a mixed strategy in
their terminology) has better average runtime than either of the
original algorithms, a possibility predicted by this theory. It is
not yet known in general whether interior points in the convex
span of state-of-the-art evolutionary algorithms perform better
than the original algorithms. The mathematical analysis of
performance explored in this paper suggests that there should
be many problems for which these interior algorithms are best.

II. REVIEW OF OPTIMIZER ANALYSIS

This analysis of performance is built on the analysis of
iterative stochastic optimizers put forward by Lockett and
Miikkulainen [6]. In this section, the basic ideas are reviewed,
and the concept of the optimization process is introduced
to represent the infinite trajectory through the search space
followed by an evolutionary algorithm.

A. Formal Setting

The search domain is assumed to be a Hausdorff topologi-
cal space (X, τ), and an optimization algorithm samples each
point from a probability distribution on the Borel-measurable
space (X,Bτ ), where Bτ is the Borel σ-algebra, a technical
tool specifying which subsets of the search domain X may
be assigned a probability, including at a minimum the open
and closed sets. In general, binary spaces, Euclidean spaces,
and neural network spaces can be represented within this
framework, and the more general expression makes it possible
to draw conclusions about a wider range of algorithms.
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A formal optimizer may be defined as follows. Suppose
the fitness function is a static real function f ∈ RX . Let
P = P[X,Bτ ] be the set of probability measures on (X,Bτ ).
Let T = T [X] be the set of finite sequences in X of arbitrary
length, i.e. T =

⋃∞
n=0X

n. Then P ∈ P represents the
probability distribution used to generate new populations (that
is, the randomized genetic operators), and T represents the
sequence of solutions (organisms) that can be proposed by
an algorithm. At each time step, an optimizer takes a history
of previous solutions and a fitness function and returns a
probability distribution to generate the next population. A one-
step optimizer is defined as a functional G : T × RX → P ,
that is, given a prior history t ∈ T and a fitness f ∈ RX , the
optimizer samples G[t, f ] to create the next proposed solution.
The set of all one-step optimizers is written as PF (for
probability-valued functionals).

A one-step optimizer is allowed to depend on the fitness
function arbitrarily. The definition can be restricted by requir-
ing an optimizer to depend only on the trajectory of fitness
evaluations over the population history. Thus if G[t, f ] =
G[t, g] whenever f(x) = g(x) for all x ∈ t, G is said
to be trajectory-restricted. The trajectory-restricted optimizers
are the most commonly studied optimizers in evolutionary
computation; for example, most No Free Lunch results pertain
to this class [12, 2, 7]. If G is further allowed to depend
only on the last population and its fitness values, then G is
population-Markov; this set of objects coincides with Vose’s
work on Randomized Search Heuristics [10, 9]. Note that
important optimization techniques such as Newton methods
can be described by one-step optimizers, but are not necessarily
trajectory-restricted, since they can depend on features such as
the gradient of the fitness function.

One-step optimizers form a closed convex subset of a
normed vector space [6], which means that the set of one-
step optimizers lies inside a continuous space and thus it
is possible to smoothly blend any two one-step optimizers.
In particular, for any G1,G2 and any α ∈ [0, 1], one may
define a line of optimizers by Gα = αG1 + (1− α)G2, where
addition and multiplication are taken pointwise. In practical
terms, one may sample from Gα by flipping a coin with bias
α to choose either G1 or G2, and then sampling from the
selected optimizer. A general convex combination is given by
Gα =

∑N
i=1 αiGi, where α is a vector whose components

sum to one, i.e.,
∑N
i=1 αi = 1. In this case, the probability

distributions produced by G are mixture distributions over the
set of probability distributions produced by {Gi}Ni=1.

In order to study performance, one must examine the points
an optimizer proposes over many steps. The next section
examines the long-running properties of optimizers.

B. The Optimization Process

When a stochastic optimizer G is run on a particular
objective f , it is initialized with the empty trajectory ∅,
and G[∅, f ] is sampled to obtain a random evaluation point
Z1. This point is added to the trajectory, and G[(Z1), f ] is
sampled to get Z2. The process continues iteratively, so that
Zn+1 ∼ G[(Zm)nm=1, f ] for each n. In this way, an infinite
random process Z = (Zn)

∞
n=1 can be generated. The finite-

dimensional distributions of this process are generated by

iterative applications of G, and so the Kolmogorov Extension
Theorem [4] implies that the process is well defined. The
process generated in this way is termed the optimization
process of an optimizer G on an objective f .

The optimization process is generated by a probability
measure over infinite sequences in X; this measure depends
on the fitness function f . The space of infinite sequences
is XN; denote by B[XN] the σ-algebra extending Bτ gener-
ated by the Kolmogorov Extension Theorem. Thus a long-
running optimizer is a functional Gf : RX → P[XN,B[XN]],
where P[XN,B[XN]] is the set of probability measures on(
XN,B[XN]

)
. The notation Gf indicates that the long-running

optimizer is generated by a one-step optimizer G on a fitness
function f , although the relationship is not one-to-one, since
different one-step optimizers that differ on population histories
of Gf -measure zero generate the same long-running optimizer.

In the notation of [6], the marginal distribution of Zn at
any particular point in time can be stated succinctly as Zn ∼
(Fn

i=1G) [∅, f ]. Conditional on (Zm)
n−1
m=1, it holds that Zn |

Z1, . . . , Zn−1 ∼ G
[
(Zm)

n−1
m=1 , f

]
.

Performance will be defined as a the expected value of a
functional of the optimization process Z. If g is a functional
on XN, then EGf [g(Z)] is the expected value of the functional
g(Z) with respect to the probability measure Gf .

In general, a property holds Gf -almost surely (Gf -a.s.) if
there is some subset A of XN such that Gf (A) = 1 and the
property holds on A. In what follows, Gf will sometimes be
treated as though it were a measure over trajectories in T [X].
Thus a set of trajectories T ⊆ T [X] corresponds to the set of
sequences in XN that infinitely expand any trajectory in T . The
set T ⊆ T [X] is described as having Gf -measure zero if the
set of all sequences that infinitely expand it has Gf -measure
zero. Also, if a property holds for all trajectories except on
a set of Gf -measure zero, then this property is said to hold
Gf -a.s.

C. Continuity of One-Step Optimizers

Lockett and Miikkulainen [6] also studied the continuity
of one-step optimizers. A one-step optimizer is a function
of two arguments and can be continuous in either argument.
Continuity answers two questions: (1) if an optimizer is altered
slightly, does it still produce similar populations? and (2)
if the fitness function is altered slightly, does an optimizer
still produce similar populations? The specific meaning of
the phrase “altered slightly” is determined by the particular
choice of topology used for trajectories, fitness functions, and
probability measures.

In this paper, the topology over trajectories is constructed
from the given topology τ ; the expression tn → t will be
used to indicate convergence for this topology, but the exact
meaning of this formulation is left open. At a minimum, the
expression tn → t should imply that there is an N such that
for n > N , |tn| = |t|, and that for all 1 ≤ i ≤ |t|, tin → ti in τ .
Here |t| indicates the length of a trajectory. In the case where
τ is a metric topology with metric ρ, then a metric topology



for T [X] can be generated from the metric

dρ (t1, t2) = | |t1| − |t2| |+
|t1|∧|t2|∑
i=1

ρ
(
ti1, t

i
2

)
. (1)

The topology over fitness functions used here is the topol-
ogy of pointwise convergence: fn → f ≡ ∀xfn(x) → f(x).
For probability measures, this paper uses the topology of the
total variation norm, ||P − Q||M = supA∈Bτ |P(A) − Q(A)|.
Other choices of topology are possible but not explored here.

A function between two topological spaces is continuous
if the inverse image of every open set is an open set. For the
sake of simplicity, the following definitions are used in this
paper.

Definition 1: A one-step optimizer G ∈ MF [X] is contin-
uous in objectives at f if for any sequence of fitness functions
{fn}, fn → f implies ||G [t, f ]− G [t, fn] ||M → 0.

Definition 2: A one-step optimizer G ∈ MF is continuous
in trajectories at t if for any sequence of trajectories {tn} ⊆
T [X], tn → t implies ||G [tn, f ]− G [t, f ] ||M → 0.

A one-step optimizer is continuous at a pair t, f if it is
continuous both in objectives and trajectories at t, f .

If a one-step optimizer G is continuous for every choice
of t, f , it is continuous everywhere. If G is continuous in
trajectories for a given function f on a set of trajectories
T ⊆ T that has Gf -probability one, then G is Gf -a.s continuous
in trajectories at f , or, more tersely, G is continuous Gf -a.s..
Almost sure continuity is the building block for studying the
continuity of performance, since it ignores discontinuities that
caused by population histories that do not occur practically.

Most popular evolutionary algorithms are continuous in
trajectories and objectives for most fitness functions and tra-
jectories of unambiguous fitness. In general, continuity applies
for fitness functions that are the limit of continuous functions.
Trajectories of ambiguous fitness are trajectories in which the
last population contains two or more distinct points that have
the same fitness value. Trajectories of ambiguous fitness will
often have Gf -probability zero unless the fitness function has
plateaus. For further discussion of when a one-step optimizer
is continuous, see [6].

The basic concepts of continuity are used to assess the
continuity of long-running optimizers and ultimately the con-
tinuity of performance criteria, which are introduced next.

III. PERFORMANCE CRITERIA

This section introduces performance criteria that formalize
common notions of what it means for an optimizer to perform
well on an objective. These formalizations will make it possi-
ble to study performance as a general abstract concept.

A. Definition of Performance

A performance criterion is defined as the expected value of
a positive function of the optimization process. Conceptually,
performance is determined by a scoring function h(z, f) that
scores the value of a particular infinite trajectory z through
the search domain on a particular fitness function f . The

performance of an optimizer G is determined by averaging
the score of each path z weighted according to the probability
that Gf will follow that path.

Definition 3: Let G ∈ PF and f ∈ XR, and let Z =
(Zn)n∈N be the optimization process induced by G on f . Then
a function φ : PF × RX → [0,∞) is a performance criterion
if there exists a measurable and nonnegative function h with
h : XN × RX → [0,∞) such that

φ (G, f) = EGf [h(Z, f)] =
∫
XN

h(z, f)Gf (dz) (2)

whenever the integrals exist; h is called the kernel of φ.

Performance criteria can be used to compare optimizers to each
other, and to analyze how the performance of an optimizer
varies as the objective changes.

The next subsection defines classes of possible perfor-
mance criteria that correspond broadly to the kinds of results
reported in the experimental literature on optimizers. These
examples are given in four groups: (1) evaluation by average
error, (2) hitting times for an error bound, (3) probability of
attaining an error bound, and (4) error at a stopping time.

B. Evaluation by Average Error

A first approach to evaluating optimizers is to average the
magnitude of the errors the optimizer makes at each time step.
This metric combines the total accuracy along with the speed
of convergence, at the risk of disproportionately penalizing
optimizers for early errors due to exploration of the objective.
Such a metric is not traditionally reported, but could prove
useful, since it contains information about the convergence
speed of the optimizer.

Let f ∈ RX , G ∈ PF , and let Z = (Zn) be the opti-
mization process generated by G on f . Define a performance
criterion by

φw (G, f) = EGf

[ ∞∑
n=1

wn |f (Z∗n)− f∗|

]
, (3)

where w = (wn) is a sequence of weights that can be used to
discount later values and f∗ = infx∈X f(x) is the minimum of
f . Three basic choices for wn are (1) wn = 1, which treats all
errors equally but only results in φw finite when G converges
on f at a fast enough rate, (2) wn = 2−n, which places more
weight on earlier errors but is finite whenever the objective is
almost surely finite on G[∅, f ], and (3) wn = 1 for n ≤ N for
some fixed N <∞ and zero otherwise, which considers only
a finite number of steps. Another scheme might ignore initial
errors up to a finite time, allowing optimizers to explore more
broadly in earlier stages without penalty.

C. Evaluation by Hitting Time

In existing literature, when evaluating a proposed opti-
mizer, the optimizer is often run on a benchmark set of
problems for which the optima are known (see e.g. [1, 3]).
A common performance criterion for ranking optimizers is
to count the number of points that must be generated before
obtaining a solution whose fitness is within a fixed error from



the globally optimal fitness. The theoretical study of this metric
is referred to as runtime analysis.

For a fixed error ε ≥ 0, define the hitting time for ε as
the first time when an evaluation point has global error less
than ε, i.e. τε ≡ min {n : |f (Zn)− f∗| ≤ ε}. Then define a
performance criterion by

ψε (G, f) = EGf [τε] , (4)

which is the average hitting time for ε over all runs of the
algorithm G on the objective f .

This formula has a flaw for non-convergent optimizers. If
G has a positive probability of failing to attain error less than ε,
then ψε =∞. Even if G succeeds quickly in 99.999% of trials,
it will still hold that ψε =∞. Additionally, from the standpoint
of approximation, only finite computational time is available,
and thus cases in which τε is large cannot be distinguished
computationally from cases in which it is infinite.

One alternative is to place a finite limit on the stopping
time; that is, for N <∞,

ψNε (G, f) = EGf [τε ∧N ] , (5)

where the notation τε ∧ N = min {τε, N} as usual. The
criterion ψNε (G, f) can be estimated reasonably by running G
on f several times for at most N evaluations. This performance
criterion also reflects a natural criterion for comparing opti-
mizers; it measures the average number of steps the optimizer
must be run before it produces a solution correct within error
ε.

D. Evaluation by Success Probability

The hitting time tests how long it takes on average to attain
an error threshold ε. However, it does not test how often the
threshold is attained. Define the sets Tε = {τε < ∞} and
TNε = {τε < N} to represent respectively the sequences that
asymptotically attain a given error bound and those that attain
it within a fixed number of evaluations. Then the success prob-
ability is the probability of attaining a bound asymptotically,
and the finite success probability is the probability of attaining
the bound within a finite time window [11]. Each of these are
performance criteria given by

σε(G, f) = Gf (Tε), σNε (G, f) = Gf (TNε ). (6)

To see that σε and σNε are performance criteria, recall that
Gf (Tε) = EGf [1A(Z)] where 1Tε is the indicator set of Tε, i.e.
1Tε(z) = 1 if z ∈ Tε and is zero otherwise. The finite success
probability is the preferred criterion of these two, since σNε can
be estimated experimentally, whereas σε cannot. Notice that σε
does not conform to the convention that lower performance
values should be better and zero should be optimal. The
convention is ignored here because the success probability has
an intuitive meaning in its own right. In situations where the
convention is important, the performance criterion 1− σε can
be used instead.

Given the finite success probability, it is of interest to know
the average hitting time for sequences that attain the error
bound. The average hitting time on successful trajectories is a
performance criterion, given by

ψ̂Nε (G, f) = EGf [(τε ∧N) 1Tε(Z)] . (7)

On its own, this quantity is not useful, since it may be zero
when the optimizer fails, i.e. when Gf (TNε ) = 0. However,
the pair

(
ψ̂Nε , σ

N
ε

)
disambiguates this situation, and these two

values can be reported together for completeness [1].

E. Evaluation by Error at a Stopping Time

Optimizers are often tested by running the algorithm for a
fixed number of evaluations and then reporting the final error.
As a generalization of this type of evaluation, suppose that an
optimizer is run until some criterion is satisfied, not necessarily
connected to the number of evaluations. As one example of
why this generalization may be useful, suppose that rather than
stopping after a fixed number of evaluations, one wishes to
stop an optimizer after it uses up a fixed amount of resources,
such as CPU cycles or calendar time. Such a criterion can be
modeled as a stopping time, and the error magnitude at this
stopping time is a performance criterion.

Let T be a stopping time equal to the generation in which
this resource limit is first expended, and define a performance
criterion by

ζT (G, f) = EGf |f (Z∗T )− f∗| , (8)

so that ζT is the smallest error attained within the allocated
resources, where Z∗n is the running minimum on Zn as above.

A substantial number of performance criteria have now
been introduced. The next two sections discuss the mathemat-
ical properties of performance criteria, such as nonlinearity,
decomposability, and continuity.

IV. PERFORMANCE PROPERTIES

It is clear that a wide variety of performance criteria
exists. These criteria can be analyzed in general according
to their mathematical properties. This section examines two
such properties that a performance criterion may possess:
nonlinearity and progressive decomposability. The question of
continuity in performance criteria is a larger topic and will be
addressed separately in the next section.

A. Nonlinearity

All non-trivial performance criteria are nonlinear in both ar-
guments. For a given objective function, the location and nature
of the optima are nonlinear qualities. The location of the global
optimum for f+g bears no general relationship to the location
of the optimum for g or f . Thus for any useful performance
criterion φ, one expects that φ(G, f + g) 6= φ(G, f) + φ(G, g)
in general, ignoring trivial choices of φ, G, f , and g.

Performance criteria are also nonlinear in optimizers as
well. For an n-dimensional cylinder set A restricting the first
n coordinates of Z, the probability that A contains Z for an
optimizer G +H is given by

(G +H)f (Z ∈ A)=
∫
A1

· · ·
n

∫
An

n∏
i=1

G+H
[
(Zm)

i−1
m=1 , f

]
(dxi) .

(9)
It is thus clear that (G+H)f 6= Gf +Hf except under special
circumstances, due to the cross terms under the product. In
general, φ(G +H, f) 6= φ(G, f) + φ(H, f).



The nonlinearity of most performance criteria has an im-
portant consequence: It opens the possibility that a convex
combination over a bank of one-step optimizers may outper-
form any of the given optimizers. This topic is discussed below
in Section V-C, where an example is also shown in Figure 1.

B. Progressive Decomposability

A progressively decomposable performance criterion can
be broken down into an infinite sum of finitely determined
random variables. A random variable h(Z) of the optimization
process is finitely determined if it depends only on a finite
prefix of Z, i.e., h(Z) = h ((Zn)

m
n=1). It is typically easier to

reason about finitely determined random variables.

Definition 4: A performance criterion φ is progressively
decomposable if there exists a sequence of functions hm :
Xm × RX → R such that

φ (G, f) =
∞∑
m=1

EGf [hm ((Zn)
m
n=1, f)] , (10)

where (Zn)
m
n=1 is the vector in Rm formed by taking the first

m elements of the optimization process.

Perhaps surprisingly, it is simple to prove that every perfor-
mance criterion is progressively decomposable by conditioning
on the natural filtration of the optimization process.

Theorem 4.1: Every performance criterion as defined in
Definition 3 is progressively decomposable.

Proof: Let (Zn) be the natural filtration of the optimiza-
tion process. Given h(z, f), let h1(Z1, f) = EGf [h(Z, f) | Z1]
and recursively define

hm ((Zn)
m
n=1 , f) = EGf [h(Z, f) | Zm]−hm−1

(
(Zn)

m−1
n=1 , f

)
(11)

Observe that EGf [h1(Z1, f)] = φ(G, f), and for m > 1,
EGf [hm((Zn)

m
n=1, f)] = 0. As a result,

φ(G, f) = EGf [h(Z, f)] =
∞∑
m=1

EGf [hm ((Zn)
m
n=1, f)], (12)

which concludes the proof.

The properties of nonlinearity and progressive decompos-
ability are useful for reasoning in general terms about multiple
performance metrics. But perhaps the most interesting property
of performance for this paper is continuity, which is studied
next.

V. CONTINUITY OF PERFORMANCE

Continuous performance criteria are of interest for a variety
of reasons. A continuous performance criterion must score an
optimizer similarly on similar objective functions. If perfor-
mance is continuous, then several other opportunities exist,
some of which include: 1) the convex span of two or more
optimizers may contain better performing optimizers than the
endpoints; 2) optimizers that are difficult to compute may be
approximated by simpler optimizers with similar performance;
and 3) for a fitness function that is expensive to calculate,
parameter settings for an algorithm may be reliably evaluated
based on their performance on approximations of the expensive
function. In this section, it is shown that finitely determined
performance criteria are continuous on continuous optimizers.

A. Continuity of the Optimization Process

When does continuity of an optimizer imply that the op-
timization process generated by that optimizer is continuous?
Specifically, suppose fn → f , and let G ∈ PF be continuous
in objectives. Does Gfn → Gf in the total variation norm?
Because the optimization process is infinite, it may be possible
for Gfn to diverge from Gf even if G is continuous everywhere.
Thus it is not possible to extend continuity from the one-step
optimizer to arbitrary performance criteria

It is possible to prove that the continuity of a one-step op-
timizer on sufficiently many trajectories implies that the long-
running optimizer yields similar average values for finitely-
determined random variables of the optimization process: It
will be shown that for any optimizer G that is continuous Gf -
a.s., and for any finitely determined random variable Y ,

EGfn [Y (Z)]→ EGf [Y (Z)]. (13)

The condition of finiteness is needed because the infinitesimal
differences between Gfn and Gf can cause divergence of the
integral after infinitely many time steps.

The space of random variables on
(
XN,B[XN]

)
is the set

of functionals on Y : XN → R whose backward projections
are B[XN]-measurable, that is, Y −1(A) ∈ B[XN] for every A
in the Borel σ-algebra on R. These random variables may be
written either in lower case as y(Z) or in upper case as Y (Z).
If written in upper case, the argument may be omitted, e.g.
Y = Y (Z).

If Y (Z) is a random variable of this sort, then EGf [Y (Z)]
integrates over X countably many times. But if Y is finitely
determined, it depends on only finitely many components in
XN. The remaining (infinitely many) steps can be integrated
out. If xm1 is the trajectory formed by taking the first m
components of x ∈ XN and Y (x) = Ŷ (x1, . . . , xm), m
integrals are required, since

EGf [Y (Z)]=

∫
XN

Ŷ (z1, . . . , zm)

∞∏
k=1

G
[
zk−11 , f

]
(dzk)

=

∫
Xm
Ŷ (z1, . . . , zm)

m∏
k=1

G
[
zk−11 , f

]
(dzk) . (14)

Along any particular trajectory t, the optimization pro-
cesses of Gf and Gfn cannot move far apart when G is
continuous in objectives on the trajectory t. If EGf [Y (Z)]
depends on finitely many optimization steps, then for large
n, EGf [Y (Z)] must be close to EGfn [Y (Z)] as well when G
is continuous in objectives at f with Gf -probability one. This
claim is made rigorous with the following theorem.

Theorem 5.1: Let G ∈ PF be continuous Gf -a.s. at an
objective f , and let fn → f pointwise. Let g (x1, . . . , xm) be
a real function on Xm with m < ∞ fixed, and suppose that
EGf |g (Z1, . . . , Zm)| < ∞ and EGfn |g (Z1, . . . , Zm)| < ∞.
Then EGfn [g (Z1, . . . , Zm)]→ EGf [g (Z1, . . . , Zm)].

Proof: Fix ε > 0. Assume ||G[t, f ]||M ≤ M < ∞.
Suppose J and L are two index sets of positive integers less
than or equal to m. J and L will be termed complementary if
J ∩ L = ∅ and J ∪ L = {1, . . . ,m}. Let K be the set of all
complementary pairs of index sets. There are exactly 2m such



pairs. These complementary sets can be used to state the joint
distribution of Z1, . . . , Zm as a sum.

Let T be a set of trajectories such that Gf (T ) = 1 and G
is continuous at t, f for all t ∈ T .

Let t ∈ T be of length at least m < ∞. Let tm1 be the
trajectory formed by the first m components of t. Then

P ((Zn)
m
n=1 ∈ dtm1 ) =

m∏
k=1

G
[
tk−11 , f

] (
dtk
)

=

m∏
k=1

[(
G[tk−11 , f ](dtk)− G[tk−11 , fn](dt

k)
)

+ G[tk−11 , fn](dt
k)
]

(15)

=
∑
J,L∈K

∏
j∈J

(
G[tj−11 , f ](dtj)− G[tj−11 , fn](dt

j)
)

×
∏
`∈L

G[t`−11 , fn](dt
`)

]
. (16)

Equation 16 expands the product in Equation 15 by cross mul-
tiplying the difference with the joint distribution over fn. This
sum contains 2m terms, one for each pair of complementary
index sets. With the exception of the complementary sets given
by J0 = ∅, L0 = {1, . . . ,m}, every pair of complementary
index sets in K yields a product in Equations 16 with at least
one factor of the form

G
[
tj−11 , f

] (
dtj
)
− G

[
tj−11 , fn

] (
dtj
)
.

Because m is finite and G is continuous in objectives, n can
be chosen so that

∣∣∣G[tj−11 , f ]− G[tj−11 , fn]
∣∣∣ < ε

22m for each
j. Thus each term in the sum except for the one at J0, L0 is
less than ε

2m , since |G[tj−11 , f ]−G[tj−11 , fn]| < 2. Further, the
term in the sum at J0, L0 reduces to

m∏
k=1

G
[
tk−11 , fn

] (
dtk
)
,

and therefore for A ∈ Bτm ,∫
A

∣∣∣∣∣
m∏
k=1

G
[
tk−11 , f

] (
dtk
)
−

m∏
k=1

G
[
tk−11 , fn

] (
dtk
)∣∣∣∣∣

≤
∑

J,L∈K\{J0,L0}

∫
A

∏
j∈J

∣∣∣G [tj−11 , f
] (
dtj
)
− G

[
tj−11 , fn

] (
dtj
)∣∣∣

< 2m
ε

22m
2m = ε. (17)

Because of the integrability assumptions on g, it follows that

|EGfn [g (Z1, . . . , Zm)]− EGf [g (Z1, . . . , Zm)]| → 0, (18)

which concludes the proof

Corollary 5.2: Under the same general assumptions as
Theorem 5.1, let A be a set in B[XN] such that for fixed
m < ∞, A is independent of Zn for n > m under Gf and
Gfn . Then Gfn (A)→ Gf (A).

Proof: Note that Gf (A) = EGf [1A]. Define
g(Z1, . . . , Zm) = EGf [1A | Z1, . . . , Zm]. Because A is
independent of Zn for n > m, g(Z1, . . . , Zm) = 1A(Z) by

the definition of conditional expectations. The result follows
directly from Theorem 5.1.

If the fitness function is held constant, but the optimizer
is altered slightly, a similar theorem holds without continuity
assumptions. Integrals over finitely determined random vari-
ables change continuously with the optimizer, regardless of
whether the optimizer is continuous. The next theorem shows
that the average value of a functional under Gnf converges to
its average value under Gf , again if the functional depends on
finitely many steps of the optimization process. This result will
be used to demonstrate that performance criteria are continuous
over optimizers.

Theorem 5.3: Let G ∈ PF , and let f ∈ RX . Let Gn → G.
Let g (x1, . . . , xm) be a real function with m < ∞ fixed,
and suppose that both EGf |g (Z1, . . . , Zm)| < ∞ and also
EGnf |g (Z1, . . . , Zm)| <∞. Then it follows from these facts
that EGnf [g (Z1, . . . , Zm)]→ EGf [g (Z1, . . . , Zm)].

Proof: Repeat the proof of Theorem 5.1, but replacing
G[tk−11 , fn] by Gn[tk−11 , f ]; note continuity is not needed.

Theorem 5.1 and 5.3 are sufficient to prove the continuity
of performance criteria on continuous optimizers.

B. Performance Continuity in Objectives

Continuity in objectives is a strong requirement, and it
will not be possible to achieve it for all cases. In this sec-
tion, something slightly weaker will be proven. Given any
sequence fn such that fn → f uniformly,1 it will be shown
that φ(G, fn) → φ(G, f) if G is continuous Gf -a.s. The
following general theorem proves that φ(G, fn) → φ(G, f)
when the kernel of φ is finitely determined and converges in
expectation under Gf as fn → f . Additionally, it is required
that φ <∞ on fn and f . It will then be shown that this type of
convergence follows for the performance criteria in Section III
when fn → f uniformly.

Theorem 5.4: Suppose φ is a performance criterion and
G ∈ PF is continuous Gf -a.s. in objectives. Let (fn)n∈N be
a sequence of functions converging pointwise to f . Suppose
additionally that the kernel h of φ is finitely determined by
the first m steps of the optimization process and has the
property that EGf [h((Zk)mk=1, fn)] → EGf [h((Zk)mk=1, f)].
Then if φ(G, f) <∞ and φ(G, fn) <∞, φ(G, fn)→ φ(G, f).

Proof: First suppose φ (G, f) < ∞ and φ (G, fn) < ∞
for all n. Fix ε > 0. Let fn → f . Suppose without loss of
generality that f∗n = f∗ = 0, since otherwise f − f∗ and fn−
f∗n will satisfy this equality. The conditions for Theorem 5.1
are met, and so

|φ (G, f) − φ (G, fn)|
= |EGf [h ((Zk)mk=1, f)]− EGfn [h ((Zk)mk=1, fn)]|
≤ |EGf [h((Zk)mk=1, fn)]− EGfn [h((Zk)mk=1, fn)]|

+ EGf |h((Zk)mk=1, f)− h((Zk)mk=1, fn)|
<

ε

2
+
ε

2
= ε. (19)

1That is, for any ε > 0 there is an N such that |fn(x) − f(x)| < ε for
n > N , and N does not depend on x.



In these equations, the left term is less that ε2 by an application
of Theorem 5.1, and the right term by the assumptions on h.

The following corollaries apply this theorem to the classes
of performance criteria defined in Section III, beginning with
the average error φw.

Corollary 5.5: If fn → f uniformly and G is continuous
Gf -a.s. in objectives, then φw (G, fn) → φw (G, f) whenever
φw(G, fn) <∞, φw(G, f) <∞, and there exists m such that
wn = 0 for all n > m.

Proof: Suppose without loss of generality that f∗ = 0
and f∗n = 0. The result will hold if EGf [h((Zk)mn=1, fn)] →
EGf [h((Zk)mk=1, f)]. For φw, h(z, f) =

∑m
k=1 wkf(z

∗
k) un-

der the assumptions. Because fn → f uniformly, it fol-
lows that h(z, fn) → h(z, f) uniformly, which proves that
EGf [h((Zk)mk=1, fn)] → EGf [h((Zk)mk=1, f)]. The desired re-
sult follows from Theorem 5.4.

The functional ζT is continuous under the same conditions,
provided that the stopping time T is almost surely finite and
does not introduce discontinuities.

Corollary 5.6: Suppose fn → f uniformly and G is
continuous Gf -a.s. in objectives. Let T = Tf (z) be a stopping
time s.t. for some m < ∞, with Gf - and Gfn -probability
one, it holds that Tfn ≤ m, Tf ≤ m, and Tfn → Tf
uniformly. Then ζT (G, fn) < ∞ and ζT (G, f) < ∞ imply
ζT (G, fn)→ ζT (G, f).

Proof: For ζT , h(z, f) =
∑m
k=1 f(z

∗
k)1{t:Tf (t)=k}(z).

Because the stopping times are discrete, there is an N inde-
pendent of z such that Tfn(z) = Tf (z) Gf -a.s. for all n > N .
Because fn → f uniformly, h(z, fn)→ h(z, f) uniformly, and
therefore EGf [h((Zk)mk=1, fn)] → EGf [h((Zk)mk=1, f)]. The
result follows by applying Theorem 5.4.

Corollary 5.6 begs the question of when T varies uniformly
with the fitness f . One simple answer is that any stopping
time that is independent of the fitness function will have this
property.

The performance criteria ψε, ψNε , σε, and σNε require more
stringent criteria in order to prove convergence, because there
exist sequences of objectives fn → f such that fn − f∗n > ε
while f − f∗ = ε. As a simple example of discontinuity, let
fn(x) = f(x) = 0 on (0, 1), and let fn(x) = ε + n−1 and
f(x) = ε on [1, 2). Let G be uniform over (0, 2). Then fn → f
uniformly, but ψε (G, f) = 1 and ψε (G, fn) =

∑∞
n=1 n2

−n =
2. The discontinuity is caused by objectives with plateaus
located at a distance of precisely ε away from the optimum.
This problem does not arise if the trajectories with error ε have
Gf measure zero. The next corollary applies to ψNε and σNε
in general, but only apply to ψε and σε when they are finitely
determined.

Corollary 5.7: Suppose fn → f uniformly, and let G be
an optimizer that is continuous Gf -a.s. Suppose the set

Zε = {z ∈ XN : |f(zm)− f∗| = ε for somem}
has Gf -measure zero. Then φ(G, fn) < ∞ and φ(G, f) < ∞
imply φ(G, fn)→ φ(G, f) when φ is one of ψNε or σNε .

Proof: On the set XN \ Zε, it is not possible to have
f(z∗m)− f∗ = ε. Thus fn(z∗m)− f∗n must eventually be on the

same side of ε as f(z∗m)− f∗. The kernel of ψNε is h(z, f) =∑N
k=1 1(ε,∞)(f(z

∗
k) − f∗). On XN \ Zε, h(z, fn) = h(z, f)

for all n > N with N independent of z. The kernel of σNε is
h(z, f) =

∑N
k=1 1Bf,kε (z) with

Bf,kε = {x ∈ Rm : |f(xk)−f∗| ≤ ε and |f(xi)−f∗| > ε ∀i < k}.

Once again, hm(z, fn) = h(z, f) for all n > N on XN \ Zε.
Thus in either case, EGf [hm(Zm1 , fn)] → EGf [hm(Zm1 , f)]
because Gf (Zε) = 0, and the result follows from Theorem 5.4.

Thus we have conditions to determine when φ(G, fn) →
φ(G, f) in many cases for the specific performance criteria
introduced in Section III.

C. Continuity in Optimizers

As a final result, performance criteria are continuous in
optimizers whenever they are finite and finitely determined,
without the complications that arose analyzing continuity in
objectives. The following theorem is analogous to Theorem 5.4
but with much weaker assumptions.

Theorem 5.8: Suppose Gn → G in the total variation norm.
Then for any f and for any φ with a finitely determined kernel,
φ(G, f) < ∞ and φ(Gn, f) < ∞ imply φ(Gn, f) → φ(G, f).
That is, every finitely determined performance criterion φ is
continuous over optimizers wherever φ is finite.

Proof: The result follows directly from Theorem 5.3.

Theorem 5.8 proves that for finite and finitely determined
performance criteria, performance always changes smoothly
as one moves from one optimizer to another along a line
through PF . Similar optimizers perform similarly on the same
objective.

As discussed above, performance criteria are in general
nonlinear. If one defines a line in optimizer space by Gα =
αG1+(1−α)G2 for two one-step optimizers G1 and G2, then the
image of this line in performance space for fitness f is given
by φ̂(α) = φ(Gα, f). Due to nonlinearity, it is entirely possible
that there is an α0 such that φ̂(α0) < φ(G1, f) and φ̂(α0) <
φ(G2, f). That is, the internal points of the line may outperform
the endpoints. In fact, Lehre and Özcan have already exhibited
choices of G1 and G2 for which this conjecture can be proven
theoretically in the case of runtime analysis (ψε). Thus the
predictions of the theory are supported in some concrete cases.

To demonstrate the shape of φ̂(α) experimentally, the one-
step optimizers for Differential Evolution (DE) and Particle
Swarm Optimization (PSO) were convexly combined to gen-
erate a line in optimizer space as above. Figure 1 shows the
performance of Gα on Schwefel’s function for various values
of α. Once again, the change in performance is smooth but
non-linear, as predicted by the theory. It can be seen that
at α = 0.95, Gα outperforms both PSO and DE, although
the result is statistically insignificant and is therefore merely
suggestive. This observation suggests that the best performance
on a particular fitness function may lie strictly inside the
convex span of commonly used optimizers. Thus the theory
suggests a new class of optimization methods that might be
classified as convex control, for which improved performance
may be possible.
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Fig. 1. Change in performance as the optimizer changes smoothly from PSO with ω = −.5, φg = φp = 2 (α = 0) to DE with CR=.2, F=.2 (α = 1). The
x-axis ranges over values of α, the y-axis over performance values. The first standard deviation is plotted where possible. The panels show the performance
criteria φ1, ζT , ψ̂Nε , and σNε , respectively, with ε = 25 for Schwefel’s function. As predicted by the theory, performance on these optimizers changes smoothly
and nonlinearly as a function of the optimizer. Interestingly, at α = .95, Gα outperforms PSO and DE on ζT , although the result is not statistically significant.

VI. DISCUSSION AND FUTURE WORK

This paper has presented a measure-theoretic analysis
of performance for iterative stochastic optimizers, including
evolutionary algorithms. A formal model of performance was
introduced, and the idea of the optimization process was
developed to support analysis of this model. It was shown that
for a finite number of steps, continuity of one-step optimizers
implies continuity of the optimization process. Further, if
the performance criterion is finite and only depends on a
finite number of steps, then performance varies continuously
as either the optimizer or the fitness function is altered,
although the fitness function must be altered uniformly. Several
commonly used performance metrics were defined within the
formal framework of this paper, and the continuity results were
applied specifically to these metrics.

This research demonstrates that the principles of functional
analysis can be applied rigorously to study evolutionary algo-
rithms. Further, such an analysis raises interesting practical
possibilities. One opportunity suggested by this analysis is
the idea of convex control, where one searches for a convex
combination of a bank of optimizers that performs best on a
particular problem. The theoretical observations in this paper
are also relevant to the problem of parameter selection for
a parameterized family of optimization algorithms. In many
cases, small changes of parameters cause correspondingly
small changes in the optimizer; these results suggest that the
change in performance due to the change will also be small.

In addition to varying the optimizer, one may also vary the
fitness function. One useful idea is that an easily computed
approximation to an expensive fitness function might be suf-
ficient for parameter selection, since the performance change
from the expensive fitness function is small due to continuity.

The applications of this research go beyond examination
of properties such as continuity. This type of performance
analysis can also be used to determine the exact nature of
priors over fitness functions that can induce No Free Lunch
theorems. Furthermore, averaging these performance criteria
over a random fitness function results in a duality between
optimizers and random fitness functions. Thus the results
presented in this paper are just the beginning of what is
possible using a measure-theoretic approach to performance
analysis.

VII. CONCLUSION

This paper has presented a measure-theoretic framework
for analyzing performance criteria for optimizers. Specific cat-

egories of performance criteria were presented corresponding
to the experimental quantities that are commonly reported in
the literature. These performance criteria were shown to be
continuous under certain conditions, suggesting the idea of
convex control as a practical way to improve performance
on a problem. This way of thinking about performance offers
a novel means for achieving theoretical results about perfor-
mance as well as practical ideas for developing new optimizers.
Such methods may be used in the future in order to discover
exciting new possibilities in optimization.
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