
A Measure-Theoretic Analysis of Stochastic Optimization

Alan J. Lockett
Department of Computer Science

Univers ity of Texas
Austin, TX, USA

alockett@cs.utexas.edu

Risto Miikkulainen
Department of Computer Science

Univer ty of Texas
Austin, TX, USA

risto@cs.utexas.edu

ABSTRACT

This paper proposes a measure-theoretic framework to study
iterative stochastic optimizers that provides theoretical tools
to explore how the optimization methods may be improved.
Within this framework, optimizers form a closed, convex
subset of a normed vector space, implying the existence of
a distance metric between any two optimizers and a mean-
ingful and computable spectrum of new optimizers between
them. It is shown how the formalism applies to evolutionary
algorithms in general. The analytic property of continuity
is studied in the context of genetic algorithms, revealing
the conditions under which approximations such as meta-
modeling or surrogate methods may be effective. These re-
sults demonstrate the power of the proposed analytic frame-
work, which can be used to propose and analyze new tech-
niques such as controlled convex combinations of optimizers,
meta-optimization of algorithm parameters, and more.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.2.m [Artificial

Intelligence]: Miscellaneous—evolutionary computation, the-
ory of optimization

Keywords

Evolutionary computation, genetic algorithms, stochastic op-
timization, theory of genetic algorithms, optimizer space,
population-based optimizers, functional analysis

1. INTRODUCTION AND MOTIVATION
Although particular evolutionary algorithms have been

studied formally in great detail, there have been relatively
few attempts to provide a unified framework that would al-
low meaningful formal comparisons between different evolu-
tionary techniques, leading to improved methods. The work
of Vose on Random Heuristic Search (RHS) is an impor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

tant exception [17, 18], but it is limited to finite, discrete
spaces, is primarily algebraic in nature, and is most com-
monly applied to genetic algorithms. This paper outlines a
new formal approach to the study of optimization algorithms
more generally as mathematical objects. It accommodates
arbitrary Borel-measurable spaces and applies to all itera-
tive optimization algorithms, although the particular focus
in this paper is on evolutionary algorithms optimizing static
(e.g. non-dynamic, deterministic) fitness functions.

This formalization leads to several interesting conclusions.
First, in the proposed analysis, a variety of algebraic opera-
tions are defined that can be used to create new algorithms;
these operators also characterize the space of optimization
algorithms as an infinite-dimensional vector space, complete
with formal definitions of distance and continuity. Second,
the framework subsumes almost all evolutionary algorithms
that are commonly used for optimization; it will be demon-
strated how several evolutionary algorithms can be instanti-
ated within the framework. Third, within this framework, it
is possible to prove that techniques such as meta-modeling
and fitness surrogates [4, 7] should perform well for most
optimizers, since most of the common evolutionary algo-
rithms are continuous almost surely, a fundamental result
that means that approximations of fitness functions or opti-
mizers behave like the approximated quantities. This paper
addresses each of these three topics in sequence below.

2. THE OPTIMIZATION PROBLEM
An optimization problem will be denoted formally as a

tuple (f,X), where f is a fitness function and X is the (po-
tentially constrained) search domain over which f is to be
optimized. Without loss of generality, optimization is as-
sumed to be synonymous with minimization; a function f
can be maximized by minimizing its additive inverse −f .
This study makes the following assumptions about the na-
ture of the search space and the fitness function:

The search space is a topological space (X, τ) where X is
the collection of possible solutions and τ is a given topol-
ogy [12]. Topologies are mainly used to reason about issues
such as continuity, limits, and nearness without reference to
distance metrics.

In addition, the search space is a measurable space (X,Bτ),
where Bτ is the Borel σ-algebra on the topology τ . A σ-
algebra on a space X is a set of subsets of X that can
be measured [2, 3, 6]. That is, they preserve certain in-
tuitive notions about volume or area. For instance, if any
two subsets of X can be measured, then so can their union,
intersection, and complements. The Borel σ-algebra is the

FOGA’13, January 16-20, 2013, Adelaide, Australia.
Copyright 2013 ACM 978-1-4503-1990-4/13/01 ...$15.00.

105

s

In Proceedings of the 12th International Workshop on Foundations of Genetic

Algorithms (FOGA-2013) 2013. ACM Press.

smallest σ-algebra under which the open and closed sets of
the topology are measurable.

These requirements are quite broad and accommodate all
familiar spaces on which optimization is performed, includ-
ing binary strings, real vectors, neural networks, graphs,
state machines, and programs.

The objective function is drawn from the space of real
functions on X, denoted RX . The topology of pointwise
convergence is assumed for this function space. Under this
topology, a set of functions {fn} converges to a function
f if and only if fn(x) → f(x) for all x ∈ X. When a σ-
algebra on R is required, the standard Borel σ-algebra for
the Euclidean topology is assumed [2, 6].

The formalization below is based on measure theory. A
measure is a set function (usually nonnegative) that assigns
a volume to each set in a σ-algebra. A probability measure
is a measure µ that additionally has µ(X) = 1. Lebesgue
integration over a real function with respect to a measure
sums up the measure of the level sets of the function. A
function f is measurable if the sets {x : f(x) ≤ y} are
contained in Bτ for all y ∈ R. It is integrable on a measure
µ if

∫

X
|f | dµ < ∞ [3, 6]. For a given measure µ, the search

space is a measure space, written as (X,Bτ , µ). In Euclidean
space, µ is assumed to be the Lebesgue measure, the familiar
measure of volume.

With this background, the space of iterative stochastic
optimizers can now be defined.

3. OPTIMIZER SPACE
In order to state theorems that can encompass the vast

majority of optimization methods, these methods must be-
long to a common mathematical space. Such a space can
be found by examining the defining characteristic of itera-
tive optimizers, namely, the iterative sequence of points they
produce.

3.1 Stochastic Iterative Optimizers
At its core, an iterative optimizer follows a trajectory

through the search domain. At each point in time, it ob-
serves the fitness value of each point along the trajectory so
far and uses this information to propose one or more points
to add to the trajectory, with the goal that later points in the
trajectory should have better fitness. The internal structure
of the fitness function is known only to a limited extent.
Thus the iterative optimizer must propose new points to
evaluate based only upon the current trajectory and its fit-
ness evaluations. The distinguishing feature of a particular
method is the mechanism that it uses in order to propose
new points (e.g. how it creates new populations). Most non-
analytic optimization methods follow an iterative process
matching this general description.

Optimization has been studied from this perspective be-
fore in the context of No Free Lunch (NFL) theorems. Rad-
cliffe and Surry presented such a formalization in 1995 [13],
followed by Wolpert and Macready in 1997 [19]. Similar for-
malizations have been used broadly since that time [16, 1,
14], but always with the goal of studying NFL. With some
modifications and generalizations, however, the same tech-
niques can be used on its own in order to study theoretical
questions about optimization methods.

Formally, recall that the fitness functions are drawn from
the space RX , where X is the search domain. Let T [X]
be the space of finite sequences with arbitrary length on

X. Elements of T [X] will be referred to as trajectories or
evaluation histories, and the entries in a trajectory will be
indexed with superscripts, i.e. ti is the ith entry in the
sequence t.1 Negative superscripts will be used to index the
trajectory from right to left, e.g. t−1 is the last element
of the trajectory t. The notation |t| will be used to refer
to the length of the trajectory t, and ∅ will refer to the
trajectory of length zero. Let P [X] = P [X,Bτ] be the
space of probability measures on the search domain X that
are measurable with respect to the Borel σ-algebra Bτ .

Definition 1. A stochastic iterative optimizer is a func-
tion G : T [X] × RX → P [X]. Let the space of all such
optimizers be denoted by PF = PF [X] (an abbreviation
for probability-valued functions).

To make the meaning of these formal objects clear, con-
sider how the optimizer G is applied to an example opti-
mization problem (f,X). For concreteness, suppose that G
implements a (1 + 1)–ES, and let the search domain be the
real line, X = R. Let the (1 + 1)–ES use Gaussian muta-
tion with a fixed variance σ2. The first step is to sample
an initial point z1 by sampling z1 ∼ G[∅, f]. In this case
G[∅, f] is an initial distribution, for example, a standard
Gaussian. Then f(z1) is observed, and a new point z2 is
sampled from G[(z1), f]. In particular, G[(z1), f] is a Gaus-
sian centered at z1 with variance σ2. The process continues
iteratively, and new points z3, z4, z5, . . . are sampled one at
a time, with zn ∼ G[(z1, . . . , zn−1), f]. For the (1 + 1)–ES,
G[(z1, . . . , zn−1), f] is a Gaussian distribution with variance
σ2 centered at

argmaxx∈{z1,...,zn−1}
f(x). (1)

The discussion so far raises two questions about the se-
lected formalism. First, why is the optimizer passed a full
copy of the fitness function f , when in fact the (1 + 1)–
ES depends only on the fitness evaluation of the points
z1, z2, . . .? Other similar formulations (e.g. [13, 19]) de-
fine an optimization algorithm to depend only on the value
of the fitness function at the evaluation points thus far, e.g.
f(z1), f(z2), The more general definition here accounts
for optimization methods that might look at features of the
fitness evaluation other than just the fitness value, such as
the derivatives of the fitness function, or statistics gathered
during a simulation. Some evolutionary algorithms, such as
Novelty Search [9], do indeed use such features to guide their
exploration of the search domain.

The second question is how this formalization can account
for evolutionary methods that use population sizes larger
than one; this question is addressed in the next section.

3.2 Population-Based Optimizers
Evolutionary methods generate entire populations, not in-

dividual points, so the choice in the previous section to use
probability distribution over individual points may seem un-
usual. However, each population is nothing more than a
collection of points. A population can be generated by sam-
pling the new set of points one at a time with the appro-
priate dependency relationships. It is entirely correct to
approach evolutionary algorithms from a probabilistic per-
spective, since the underlying probability distribution gov-
erning these methods is nothing other than the mechanism
1The subscript notation, e.g. tn, is reserved for sequences of
trajectories, used in Section 8 to obtain continuity results.

106

by which the next population is created from previous pop-
ulations with random variations.

A population-based optimizer G with population size K >
0 can be represented as a sequence of K separate optimizers
G1, · · · ,GK (not necessarily distinct), each of which is used
to generate one individual per population. A trajectory can
then be broken up into populations, with one optimizer as-
signed to each slot in the population. A population-based
optimizer is given by G [t, f] = Gk(t) [t, f], where k(t) ≡
1 + (|t| mod K) is the index of the individual in the pop-
ulation currently being constructed. The function k(t) will
be used repeatedly below.

A population may be treated as an element in the prod-
uct space XK consisting of K copies of the search domain
X. A trajectory t ∈ T [X] can be broken up into a history
of populations H = h1, h2, h3, · · · with hi ∈ XK using the
mapping hi,k = t(i−1)K+k+1, recalling that trajectories are
indexed with superscripts. Let H(t) be the history of com-
plete populations in the trajectory t, so that H(t) ignores
any elements in t with index greater than ⌊|t|/K⌋. Then
H(t) is a trajectory over populations, i.e. H(t) ∈ T

[

XK
]

.
To complete the setup, let traj(H) convert a population his-
tory H ∈ T

[

XK
]

to a trajectory in T [X] via the mapping

traj(H)j = H⌊j/K⌋,1+(j mod K). Then traj(H(t)) = t if and
only if the length of t is a multiple of K, i.e. |t| = K⌊|t|/
K⌋; otherwise, it truncates the end of t at the last popu-
lation boundary. The notation G[H(t), f] may be used to
mean G[traj(H(t)), f] when this notation is clear from the
context.

A population-based optimizer is distinguished by the fact
that it respects the population boundary, and new popula-
tions can only be generated based on information available
from prior populations.

Definition 2. An optimizer G ∈ PF is a population-based
optimizer with population size K if G[t1, f] = G[t2, f] when-
ever f(ti11) = f(ti22) for all 1 ≤ ij ≤ |tj | − k(tj), where k(t)
is computed for population size K.

That is, to be a population-based optimizer, an optimizer
must be able to evaluate points in parallel. The space of
all population-based optimizers of population size K will be
denoted by PBOK .

The simplest way for an optimizer to be population-based
is if the optimizer does not depend on the objective at all.

Definition 3. An optimizer G ∈ PF is objective-agnostic
if G [t, f] = G [t, g] for all f, g ∈ RX .

Most algorithms in evolutionary and natural computation
depend on the objective only through the fitness evaluations
along the evaluation history, i.e. on f(x) for x ∈ t. Such an
algorithms will be termed trajectory-restricted.

Definition 4. An optimizer G ∈ PF is trajectory-restricted
if G [t, f] = G [t, g] whenever f(x) = g(x) for all x ∈ t.

The set of trajectory-restricted optimizers corresponds di-
rectly to the set of optimizers usually studied for the NFL
theorems [19, 14]. Most evolutionary algorithms are trajectory-
restricted population-based optimizers. The following exam-
ple will illustrate these concepts.

3.3 Example: Simulated Annealing
Simulated annealing [8] is a widely used optimization method

that can be formalized as a population-based optimizer with
population size 2. At each non-initial time step for simulated
annealing, there is an accepted solution x, and a new solu-
tion y is proposed. The objective value f(y) is computed,
and y replaces x as the accepted solution with probability

A(y, x, f, T) = exp

(

1

T
[f(x)− f(y)]

)

∧ 1, (2)

where T is the temperature parameter of simulated anneal-
ing and the infix operator ∧ indicates the minimum of its
arguments, so that y is always accepted if f(y) < f(x).
Clearly, simulated annealing is trajectory-restricted. For
this formalization, the population for simulated annealing
consists of the accepted and proposed solutions.

Simulated annealing generates the proposed solution from
a space-dependent proposal distribution. For this example,
let the search domain be the real line, X = R, with a mul-
tivariate Gaussian as the proposal distribution, N

〈

µ, σ2
〉

,
for some fixed positive number σ ∈ R. Let the trajectory
t store the accepted solution and the proposed solution in
alternation, so that each point tn in the trajectory is the
accepted solution at the ⌊n

2
⌋th time step if n is odd, and

the proposed solution if n is even. Then set µ = t−1, the
last accepted solution in the trajectory. Then the proposal
distribution is

P [t, f] = N <t−1, I > . (3)

Given a proposed y and an accepted solution x, simulated
annealing performs a Bernoulli trial to determine whether to
accept y or keep x. Let B 〈p, y, x〉 be a Bernoulli distribution
that produces y with probability p and x with probability
1− p. The acceptance step for simulated annealing is then

A[t, f] = B
〈

A(t−1, t−2, f, T (|t|/2)), t−1, t−2〉 , (4)

recalling that t−1 contains the proposal and t−2 the accepted
solution. The temperature T (n) is assumed to be a function
of the length of the trajectory, commonly T (n) = 1/ log n.

Simulated annealing can thus be viewed as a population-
based optimizer SA of size 2 with SA1 = A and SA2 = P .
The starting population (t1, t2) is initialized randomly, and
thenceforth SA1 and SA2 are used in alternation to accept
and propose solutions.

The profusion of symbols in this example may seem unnec-
essary at first. However, the formalism makes it possible to
compare simulated annealing directly with other optimiza-
tion methods in a way that pseudocode does not allow. For
instance, the classic (1+1)–ES is formally the norm-limit of
SA as the temperature schedule goes to zero.

In addition, the simulated annealing example makes use
of several components and techniques that will be used in
defining evolutionary algorithms. The proposal distribution
P plays the role of a mutation operator in evolutionary
methods, randomly altering a previously evaluated point.
The acceptance optimizer A mirrors the role of selection in
evolutionary methods. The formal elements of evolutionary
algorithms will be explored further in Section 6, after some
required notation is introduced in Section 3.4.

3.4 Notation and Conventions
This subsection completes the notation and conventions

that will be used throughout the subsequent text. Op-

107

timizers will typically be denoted by capital cursive let-
ters, usually by G. The expression G [t, f] will be used to
refer to the probability measure corresponding to a tra-
jectory t ∈ T [X] and a fitness function f ∈ RX . Ac-
cordingly, G [t, f] (A) indicates the probability that the next
point will lie inside of a set A contained in the σ-algebra
Bτ . The notation G [t, f] (dx) represents a quantity that
can be integrated over A in the Lebesgue sense to obtain
G [t, f] (A) =

∫

A
G[t, f](dx).

Fitness functions f ∈ RX are assumed to have a finite
minimum, denoted by f∗ = infX f(x) > −∞. For the pur-
poses of the present study, unbounded functions in RX may
be ignored without causing a problem.

Only static, single-objective fitness functions are consid-
ered in this theory. The formalism could be expanded to ac-
commodate either dynamic or stochastic objective functions,
but these adaptations would yield separate results and would
complicate the discussion that follows. Unless mentioned or
otherwise clear from context, the terms optimization and op-
timum should be interpreted as minimization and minimum
in the remainder of the paper.

As mentioned above, trajectories will be indexed using
superscripts, so that tn indicates the nth evaluation point in
t, with indices starting at 1 for the initial point. Negative
superscripts index the trajectory backwards, so that t−1 is
the last point in t, t−2 the next to last, and so on. Subscripts
on trajectories indicate a sequence of trajectories, so that
e.g. tn is not a point, but an entire sequence of points.
Thus tmn represents a particular point within a sequence of
evaluation histories. Two trajectories can be concatenated
to form a longer trajectory, denoted by a union operator,
e.g. t = t1 ∪ t2. An element x ∈ X can also be appended to
a trajectory, denoted similarly by t = t1 ∪ x. The notation

t ∪
(

⋃K
i=1 xi

)

indicates successive concatenation, i.e. t ∪

x1∪x2∪· · ·∪xK . Given a sequence (xn)
∞
n=1, the expression

(xn)
N
n=1 represents a trajectory of length N , and (xn)

0
n=1 =

∅ by convention. In addition to indexing, the notation x ∈ t
will be used to indicate that x is an arbitrary point occurring
at some point in t, i.e., x = tn for some n.

As discussed in Section 3.2, the notation H(t) is used to
convert a trajectory in T [X] to a trajectory in T [XK] for
some fixed K that will be clear from the context. When this
is done, H(t)n refers to the nth entry of H(t), an element
of XK , and H(t)n,k refers to the kth component of the nth

entry, an element of X.
Consider the process of running an optimizer G ∈ PF on

an objective function f . First, the trajectory is initialized
to t0 = ∅. Then, a point x1 ∈ X is sampled from G [t0, f].
This population is appended to t0 to create t1 = t0 ∪ x1.
Next, a population x2 is sampled from G [t1, f] and appended
to t1 to form t2 = t1 ∪ x2. The process continues until a
stopping criterion is reached. Thus in actual practice the
trajectory t is sampled progressively from the optimizer G,
and the trajectory takes on random values. This random
sequence of evaluation points is a stochastic process, termed
the optimization process, denoted by Z = (Zn)n∈N. The
process Z is said to be generated by G on f .

With the basic formalism now presented, the Sections 4
and 5 will expand these fundamentals with definitions and
constructive operators that make it possible to describe more
complex optimizers in Section 6 and 7 and to prove theorems
about them in Section 8.

4. ALGEBRAIC OPERATIONS
Optimizers can be combined or altered algebraically to

form a new optimizer in several ways. In this section, mech-
anisms for algebraically combining operators are discussed.
These operations will be used extensively to provide formal
representations of evolutionary algorithms in Section 6.

4.1 Convolution
The first operator will be termed convolution due to its

similarity to the convolution of two functions. In this case,
two optimizers are convolved to produce a third optimizer,
and the constituent parts may or may not be practical opti-
mizers on their own. The convolution operator, denoted by
⋆, is defined by the equation

(G1 ⋆ G2) [t, f] (A) ≡

∫

X

G2 [t ∪ x, f] (A) G1 [t, f] (dx) . (5)

Convolution performs the intuitive function of applying two
probability distributions in sequence. First, a point is sam-
pled from G1, and then a point is sampled from G2 given
the outcome of sampling G1. In fact, the entire process of
stochastic optimization described in the previous sections
boils down to the successive application of the convolution
operator, so that if (Zn)n∈N

is generated by G, then (Z2n)n∈N

is generated by G ⋆G. In general, Zn ∼ (⋆n
m=1G) [∅, f] when

Z ∼ Gf , where ⋆
n
m=1G represents n successive applications

of convolution. When two or more convolution operators
are used, convolution is assumed to be left associative, e.g.
G1 ⋆ G2 ⋆ G3 = (G1 ⋆ G2) ⋆ G3. Because convolution is not
necessarily commutative, right association is not equal to
left association, and so the postfix notation (G⋆n

m=1) will
indicate chained right associations, e.g. G1 ⋆ (G2 ⋆ G3). The
description of evolutionary algorithms in particular can be
substantially simplified by the use of the convolution oper-
ator. For example, a genetic algorithm may be described as
the convolution of selection, crossover, and mutation distri-
butions.

4.2 Trajectory Truncation
Sometimes an optimizer will ignore one or more elements

of the evaluation history. This property is particularly im-
portant for population-based optimizers, which often ignore
the previously generated members of the current population.
Define trajectory truncation by the symbol ⊳ so that

(⊳G) [t ∪ x, f] = G [t, f] , (6)

with the base case (⊳G) [∅, f] = G [∅, f]. This operator can be
applied to the same optimizer more than once. The notation
⊳kG will be used to represent the optimizer resulting from
k ≥ 0 applications of trajectory truncation, with ⊳0G ≡ G.

4.3 Pointwise Scalar Multiplication
Define pointwise scalar multiplication so that

(αG) [t, f] (A) ≡ α (G [t, f] (A)) (7)

for α ∈ R. It is clear that αG is not a member of PF for
α 6= 1, since αG[t, f](X) = α and αG[t, f] is not a probability
distribution. However, αG is a member of a larger space that
will be introduced in Section 5 below.

4.4 Pointwise Addition
Define pointwise addition so that

(G1 + G2) [t, f](A) ≡ G1[t, f](A) + G2[t, f](A). (8)

108

As with scalar multiplication, it is clear that G1 + G2 is
not contained within PF , but the operation is well-defined
nonetheless and is used below.

4.5 Convex Combination
Optimizers can be combined convexly to form new oper-

ators using the basic operations of pointwise addition and
pointwise scalar multiplication. Used by themselves, these
two operations are not closed on PF , but their convex com-
binations are closed.

Let α ∈ [0, 1] and consider G = αG1 + (1− α)G2. Then
G [t, f] is always a probability distribution, so G ∈ PF . More
generally, choose α1, . . . αn in [0, 1] such that

∑

i αi = 1, and
suppose that G1, . . . ,Gn are optimizers. Then G =

∑

i αiGi

is a convex combination of G1, . . . ,Gn, and G ∈ PF . So PF
is closed under convex combination.

To emphasize, PF is a convex space, i.e. it is closed under
convex combinations. For any G1, . . . ,Gn contained in any
one of these spaces, all convex combinations also lie inside
the same space.

The fact that PF is convex is the first part of a larger
result. In fact, PF is a closed, convex subset of a normed
vector space, which means that the space of optimizers is
continuous and linear. This topic is explored next.

5. A NORMED VECTOR SPACE
Iterative stochastic optimizers are vectors in an appro-

priate vector space under the vector operations of pointwise
scalar multiplication and pointwise addition. A vector space
is continuous and linear, meaning that one can make arbi-
trarily small perturbations of one vector in the direction of
any other vector. Such spaces have a regular structure that
is easily manipulated in order to prove theorems. The vector
space of optimizers consists of functionals that take a tra-
jectory and a fitness function and return a signed measure.

5.1 Vector Space
A vector space, also termed a linear space, is a space in

which each element (called a vector) can be scaled to form
a line through scalar multiplication or added to another ele-
ment to obtain a third element also contained in the space.
The multiplication and addition operations must satisfy cer-
tain requirements, namely: addition needs to be commuta-
tive and invertible; an identity must exist for each operation;
and multiplication must distribute over addition. A normed
vector space additionally possesses a norm, which assigns an
absolute magnitude to each element in the space and can
be used to generate a distance metric. The space of opti-
mizers PF can be used to generate a normed vector space
by extending it to include the closure of PF under scalar
multiplication and pointwise addition.

5.2 Measure-Valued Functionals
For G ∈ PF and α 6= 1, the pseudo-optimizer αG fails

to be in PF only because αG[t, f](X) = α 6= 1. Although
αG[t, f] is not a probability measure, it is a measure. A
finite signed measure is a set-valued function defined over
a σ-algebra that is additive on disjoint sets. It may take
on both positive and negative values, but must be finite on
every set in the σ-algebra. Denote by M [X] = M [X,Bτ]
the space of all finite signed measures on (X,Bτ). The space
M [X] is a Banach space, a complete, normed vector space.
The standard norm for M [X] is the total variation norm,

which is the largest absolute measure assigned to any set in
the σ-algebra, ||µ||M ≡ supA∈Bτ

|µ (A)|.
The space of probability measures P [X] is a closed, con-

vex subset ofM [X]. Although all probability measures have
a total variation norm of 1 by definition, the difference of two
probability measures is well defined and non-trivial. This
difference defines a distance metric on probability measures,

d (P,Q) = ||P−Q||M = sup
A∈Bτ

|P (A)−Q (A)| (9)

for probability measures P and Q. Intuitively, the distance
between two probability measures is determined by the set
to which the two measures assign the largest difference in
probability mass.

Now define the functional space

MF0 = MF0 [X] =
{

G : T [X]× R
X → M [X]

}

, (10)

whereMF stands formeasure-valued functionals. The space
MF0 contains PF , but it also contains many other objects
as well. An element in MF0 is a function that produces
a finite signed measure over the search space when given
any finite trajectory and any fitness function. Define vector
operations in MF0 pointwise as for PF . These vector oper-
ations satisfy the required vector properties. The zero vector
for MF0 is the function that returns the zero measure on
all inputs. So MF0 is a vector space. In fact, MF0 is just
the vector closure of PF under the operations of pointwise
scalar multiplication and addition.

The next step is to find a norm for MF0 to compare the
distance between optimizers. A norm can be created from

||G||MF = sup
t∈T ,f∈RX

||G [t, f] ||M. (11)

The function || · ||MF satisfies all the properties of a norm
with the exception that it is not bounded on MF0. How-
ever, the subset of MF0 on which it is finite forms a vector
subspace MF0 that contains PF . To this end, define

MF ≡ {G ∈ MF0 : ||G||MF < ∞} .

Theorem 5.1. MF is a normed vector subspace of MF0

under || · ||MF .

Proof. The vector space structure of MF0 has already
been discussed. To see that || · ||MF is a norm, note that for
G ∈ MF , α ∈ R,

||αG||MF = sup
t,f

||αG||M = |α| ||G||MF .

Additionally, if G 6= 0, there exist t, f s.t. ||G [t, f] ||M > 0,
so ||G||MF > 0 as well. For the triangle inequality,

||G1 + G2||MF = sup
t∈T ,f∈RX

||G1 [t, f] + G2 [t, f] ||M (12)

≤ sup
t∈T ,f∈RX

||G1 [t, f] ||M + ||G2 [t, f] ||M(13)

≤ sup
t∈T ,f∈RX

||G1 [t, f] ||M +sup
t∈T ,f∈RX

||G2 [t, f] ||M(14)

= ||G1||MF + ||G2||MF < ∞. (15)

So || · ||MF is indeed a norm.
MF is a vector subspace because it contains the zero vec-

tor and is closed under vector addition and scalar multipli-
cation.

109

It may be asked whether MF is complete and therefore
Banach. The answer is no; it is easy to create sequences
in MF with an unbounded norm in the limit. However,
this fact will not be particularly restrictive for the purpose
of analysis, since the iterative stochastic optimizers form a
closed subset of MF .

Proposition 5.2. PF is a closed, convex subset of MF.

Proof. First of all, if G ∈ PF then ||G||MF = 1 < ∞, so
PF ⊆ MF . To show that PF is closed, let ||Gn−G||MF → 0
for (Gn) ⊆ PF . Then for all t, f , ||Gn [t, f]−G [t, f] ||M → 0,
and for all A ∈ Bτ ,

G [t, f] (X) = lim
n

Gn [t, f] (X) = 1, (16)

G [t, f] (A) = lim
n

Gn [t, f] (A) ≥ 0. (17)

That is, G [t, f] is a probability measure, so G ∈ PF .
To establish convexity, let G1, G2 ∈ PF , and let α ∈ [0, 1].

Set G = αG1 + (1− α)G2. Then for all t, f , and A,

G [t, f] (X) = αG1 [t, f] (X) + (1− α)G2 [t, f] (X) = 1, (18)

G [t, f] (A) = αG1 [t, f] (A) + (1− α)G2 [t, f] (A) ≥ 0, (19)

and therefore G ∈ PF .
Thus iterative stochastic optimizers are vectors. There is

a fixed numeric distance between any two computable opti-
mizers, and there is a an entire spectrum of computable op-
timizers that progressively blend between them, no matter
how different the optimizers in question may be. For exam-
ple, there exists a unique optimizer that is exactly halfway
between conjugate gradient descent and differential evolu-
tion. This insight is surprising and opens a fundamentally
new way of looking at optimization methods. A sampling of
how this theory of optimizers may be used to prove theorems
about optimizers is given in Section 8, after specific discus-
sion of how evolutionary algorithms fit into the formalism.

6. EVOLUTIONARY ALGORITHMS
In this section, the basic components of evolutionary algo-

rithms are represented in the formal framework of the pre-
vious sections. This process demonstrates the formalization
and lays the ground work to prove complex theorems, as is
done in Section 8.

6.1 Evolutionary Algorithms Characteristics
The core characteristics of an evolutionary algorithm in-

clude competition within a population, preferential selec-
tion of competitive individuals, reproduction among selected
individuals, and random variation of selected individuals.
These four processes can be realized into evaluation, selec-
tion, recombination, and mutation phases. In the case of
asexual reproduction, recombination may be vacuous. In
formal terms, an evolutionary algorithm can be formalized
as a convolution of three components, one each for selection,
recombination, and mutation processes.

Each phase of an evolutionary algorithm can be described
as an optimizer, just as the acceptance phase and proposal
phase of simulated annealing were separated into two dif-
ferent components in Section 3.3. Thus evolutionary algo-
rithms can be formalized by defining what principles make
an optimizer work as a selection rule, a recombination op-
erator, or a mutation operator. The optimizers represent-
ing each phase are not effective optimizers by themselves.

The constituent components of an evolutionary algorithm
are only optimizers in a formal sense, but these components
represent genetic operators that can be mixed and matched
mathematically to form new optimization methods.

6.2 Selection, Recombination, and Mutation
These three phases of an evolutionary algorithm may be

thought of as intermediate steps, each of which creates a
full population and hands it off to the next phase. Selec-
tion chooses K points from among the previously observed
points. Recombination invokes one or more additional se-
lection rules to tack on extra parents and then merges these
parents with a crossover rule. This merged output of K in-
dividuals is then handed off to the mutation operator, which
alters each individual independently. These three stages will
now be discussed rigorously one at a time.

6.2.1 Selection Rules

Selection in evolutionary algorithms is a filtering task,
characterized as follows: Given a set of previously observed
individuals, select a group of K individuals to form the
basis of the next population. The selection process must
place zero weight on unobserved individuals; only members
of the population history can be selected. Given a trajec-
tory t ∈ T , define the previously observed individuals in t
as P (t) = {x ∈ X : ∃n s.t. x = tn}. Accounting for popula-
tions, a selection rule is an optimizer that places zero prob-
ability on any proposed population that would expand P (t).

Definition 5. An optimizer S ∈ PBOK is a selection rule
if S [t, f] (A) = 0 whenever ∃x ∈ A s.t. P (t ∪ x) 6= P (t).
It may seem strange that the selection rule is allowed to se-
lect any member of P (t) and not just the members of the
last population (P (H(t)−1)). But there are a number of
evolutionary methods that select members of populations
prior to the last population, such as those using elitist selec-
tion. Methods that store the locally best individual (such
as differential evolution) also need the flexibility to select
from previous generations. Furthermore, several recently
proposed techniques such as Novelty Search [9], Curiosity
Search [15], and Evolutionary Annealing [10] store members
from each population in an archive, making them available
for selection.

6.2.2 Recombination and Crossover

Recombination combines some number of selected indi-
viduals as parents to form a hybrid child. Although tradi-
tional recombination methods in genetic algorithms utilize
only two parents, other methods use an arbitrary number
of parents. In evolution strategies, for example, intermedi-
ate crossover averages components across several solutions.
A recombination operator first selects the parents for each
member of the population and then invokes a crossover rule
to combine the parents. The number of selected parents
(usually just two) is said to be the order of the crossover
rule and the recombination operator. Parent selection for
an nth order operator stacks n populations on top of the
current trajectory. A crossover rule consumes these n popu-
lations and leaves a single merged population in their place.

The key feature of a crossover rule is that it should com-
bine only the selected parents. It should therefore be inde-
pendent of all other components of the input trajectory. It
should also ignore the fitness of the selected parents, defer-
ring such judgments to the selection operators. For the kth

110

member of the population the selected parents in a crossover
rule of order n are just the kth members of the previous n
populations in the trajectory. Define the trajectory

parents(t, n, k,K) ≡
n
⋃

i=1

H(t)−i,k, (20)

recalling that H(t) is the population history of t, negative
indices count backwards from the end of the history, and
the double index chooses the kth member of the −ith popu-
lation. Then parents(t, n, k,K) is the reverse ordered list of
the parents available to the crossover rule.

Definition 6. An objective-agnostic optimizer C ∈ PBOK

is a crossover rule of order n if there exist C1, . . . , CK ∈ PF
such that C[t, f] = Ck(t)[t, f] and for all k = 1, . . . ,K and all
t1, t2 ∈ T , Ck [t1, f] = Ck [t2, f] whenever

parents(t1, n, k,K) = parents(t2, n, k,K).

That is, a crossover rule is independent of all but the selected
parents.

This definition of crossover accepts a wide range of in-
stantiations that do not necessarily match the concept of
crossover in a traditional genetic algorithm. This intuition
will be restored with the introduction of crossover masks in
Section 7. With crossover rules defined, the definition of a
recombination operator can now be given.

Definition 7. An optimizer R ∈ PBOK is a recombina-
tion operator of order n if there exists a sequence of n − 1
selection rules S1, . . . ,Sn−1 ∈ PBOK and a crossover rule
C ∈ PBOK of order n such that

R = ⊳S1 ⋆ (⊳2S2 ⋆ (· · · ⋆ (⊳n−1Sn−1 ⋆ C))) .

Operationally, each of the selection rules Si are applied in
order, with the previous selection hidden by the trajectory-
truncation operator. Finally, the crossover rule is invoked to
combine the selected points, including the first point selected
by an initial selection rule outside of the recombination oper-
ator. 2 The convolution is performed with right association
so that the results of selection are stacked together and not
consumed until the crossover rule is reached. Note that there
is only one possible recombination operator of order 1, and it
vacuously reproduces the selected population, representing
asexual reproduction.

6.2.3 Mutation Operators

Mutation in evolutionary algorithms alters a single mem-
ber of a proposed population. Mutation must be objective-
agnostic; it cannot be aware of the fitness of the point it is
mutating.In addition, a mutation operator can only vary the
individual member of the population that has been proposed
to it. That is, a mutation operator must ignore every mem-
ber of the trajectory except the one that is being mutated.
Conversely, a mutation operator cannot simply ignore the
individual it is mutating. Therefore, a condition is included
stating that the mutation operator must depend on the ob-
ject being mutated for at least some trajectories. These
restrictions are added to make the definition of evolution-
ary algorithms in Definition 9 below meaningful; without

2The initial selection rule could have been pushed inside the
recombination operator, but keeping it outside makes the
formal definition of an evolutionary algorithm more natural.

these conditions, any optimizer would be an evolutionary
algorithm.

Definition 8. An optimizer V ∈ PBOK is a mutation op-
erator if V is factorial and objective-agnostic and for all
1 ≤ i ≤ K, the following two conditions hold:

• ∀t1, t2 ∈ T , Vi [t1, f] = Vi [t2, f] whenever H(t1)
−1,i =

H(t2)
−1,i, and

• ∃t1, t2 ∈ T s.t. H(t1)
−1,i 6= H(t2)

−1,i and Vi [t1, f] 6=
Vi [t2, f].

These definitions are constructed to be as restrictive as pos-
sible while still accounting for the full range of genetic op-
erators commonly used in evolutionary methods. They can
be assembled to form a complete algorithm using the con-
volution operator.

6.3 Quasi-Evolutionary Algorithms
Selection, recombination, and mutation operators can be

combined to form a general schema for evolutionary algo-
rithms. The result is slightly more general than a typical
evolutionary algorithm and is termed a quasi-evolutionary
algorithm.

Definition 9. An optimizer E ∈ PBOK is called a quasi-
evolutionary algorithm if it is not objective-agnostic and if
there exist a selection rule S , a recombination operator R
of order 1 or greater, and a mutation operator V such that
E = S ⋆R ⋆ V.

Proposition 6.1. By implication, E ∈ PBOK is also a
quasi-evolutionary algorithm if it is not objective-agnostic
and there is a selection rule S and a mutation operator V
such that E = S ⋆ V, in which case E has a recombination
operator of order 1.

Intuitively, a quasi-evolutionary algorithm samples one or
more selection rules to propose a new parent population from
the selected individuals, then recombines the parent popu-
lation to form a new child population, and finally samples a
mutation operator to alter the selected individuals.

The term “quasi-evolutionary algorithm” is used because
this formalism does not exclude certain non-evolutionary al-
gorithms such as Nelder-Mead or greedy hill-climbing. In
fact, many optimization methods can be formally described
as“quasi-evolutionary”through the use of innovative crossover
rules, despite the substantial restrictions on the definitions
above. When evolutionary algorithms are described math-
ematically in this manner, it is not clear that there exists
a single elegant description that separates traditional evolu-
tionary algorithms from other optimization methods [11].

7. GENETIC ALGORITHMS
Modern genetic algorithms mix and match a variety of

selection, crossover, and mutation components to form an
optimization routine. This section will examine some of the
most common among these components.

7.1 Selection in GAs
Selection in genetic algorithms is typically restricted to the

members of the last population, so that a genetic algorithm
unfolds as a sequence of populations each constructed solely
from the previous one. An optimizer G ∈ PBOK is termed

111

population-Markov if it depends only on the last population,
that is, if G[t1, f] = G[t2, f] whenever H(t1)

−1 = H(t2)
−1.

Genetic algorithms are population-Markov in general.

Proposition 7.1. A quasi-evolutionary algorithm is
population-Markov if and only if its recombination opera-
tor and selection rule are, and a recombination operator is
population-Markov if and only if all of its selection rules are.

Two of the most common selection rules historically are
proportional selection and tournament selection. In propor-
tional selection, members of the prior population are selected
independently proportional to their fitness in the previous
population. Ordinarily, the fitness function is assumed to
be positive, and the genetic algorithm is maximizing the fit-
ness and so prefers larger fitness values. To use proportional
selection for minimization, a modulating function g > 0 is
introduced so that g(t, y) is intended to be positive and in-
creasing as y = f(x) is minimized. If it is desired to max-
imize f and f > 0, then g(t, y) = |y| will prefer the min-
imal values of −f . Proportional selection with this choice
of modulating function will be termed standard proportional
selection or roulette wheel selection. A more neutral choice is
g(t, x) = exp(−x); note that this choice is similar to the ac-
ceptance probability for simulated annealing. Given a mod-
ulating function g, proportional selection is given by

PS 〈g〉 [t, f] ({y}) ∝ NH(t)−1 (y) [g(t, f (y))] , (21)

whereNP (y) is the number of times the individual y appears
in the population P . Then NP is nonzero for at most K
points, so the normalization can be computed by summing
over the prior population H(t)−1.

Proportional selection is highly sensitive to the magni-
tude of variation in the fitness function and so can become
trapped in steep local minima. Tournament selection chooses
members of the prior population according to their rank in
the population in order to maintain diversity within the pop-
ulation. In this section only tournaments over the full popu-
lation are considered. Full tournament selection chooses the
best member of the last population with probability q. If the
best member is not selected, the second best member is cho-
sen with probability q, and then the third, and the fourth,
and so on. If the population is exhausted, the selection
wraps back around to the best individual. The parameter
q is referred to as the selection pressure since high values of
q favor the best individuals in the population. Tournament
selection is given explicitly by

T S 〈q〉 [t, f] ({y}) ∝ (1− q)R(y,f,H(t)−1) , (22)

where R (y, f, P) ∈ N ∪ {∞} is the rank of the individual y
in the population P under the fitness function f , with 0 be-
ing the best rank, and R (y, f, P) = ∞ if y does not appear
in P . In case of ties among non-equal individuals, assume
later members of the population are ranked higher. Again,
T S is nonzero for at most K points so that the normaliza-
tion is easily computed. Notice that the right-hand side of
Equation 22 can be treated as a modulating function.

7.2 Crossover in GAs
The distinguishing characteristic of a genetic algorithm

is undoubtedly recombination with two parents (sexual re-
production). Standard crossover rules of order 2 include one
point crossover, multipoint crossover, and uniform crossover.
The parents are selected using one or more selection rules,

and then a “child” is created using the crossover rule to com-
bine the properties of the parents.

Because crossover rules are specific to the search space,
examples will only be given for the case in which the search
space X is a d-dimensional vector space, X = Y d, such as
X = Rd (Euclidean space) or X = {0, 1}d (binary space).
In this case, many second-order crossover rules can be deter-
mined by a random binary vector M ∈ {0, 1}d which will be
termed the crossover mask. If Mi = 1, then the child copies
the ith attribute of the father. If Mi = 0, then the child
copies the ith attribute of the mother. Denote by 1 the vec-
tor in {0, 1}d whose entries are all one, and let x⊗ y be the
vector that is the componentwise product of vectors x and
y. For a trajectory t, let p(t) be the selected father and m(t)
the selected mother, so that p(t) = parents(t, 2, k(t),K)−1

and m(t) = parents(t, 2, k(t),K)−2. Define a random vari-
able Ct by

Ct = M ⊗ p(t) + (1−M)⊗m(t). (23)

Then given a distribution PM over M , a masked crossover
rule is just the distribution of Ct and can be written as

C 〈PM 〉 [t, f](A) =
∑

z∈{0,1}d

P (Ct ∈ A | M = z) PM (z) ,

(24)
Single point, multipoint, and uniform crossover can be

defined by specifying PM . For uniform crossover, the choice
of mask is uniformly random,

UC[t, f] = C
〈

Uniform
(

{0, 1}d
)〉

. (25)

For single point crossover, a random index i ∈ {1, . . . , d} is
chosen, and the mask is set so that Mj = 1 for j ≤ i and
Mj = 0 for j > i. In multipoint crossover, a fixed number
of random indices i1, . . . , in are chosen and then sorted. M
then alternates between series of zeros and a series of ones,
starting with ones and with switches occurring at each of
the ij . Let SC denote single-point crossover and let MC
represent multipoint crossover.

7.3 Mutation Operators
Mutation operators depend on the search space and can be

almost any objective-agnostic distribution. The most com-
mon mutators, however, are Bernoulli mutation in binary
spaces and Gaussian mutation in Euclidean space. In dis-
crete or combinatorial spaces, mutation distributions typi-
cally involve random structural operators.

First, consider Gaussian mutation in X = Rd. The mean
of the Gaussian is simply the point being mutated (t−1)
and the covariance is a function of the prior points eval-
uated, often a constant. Then Gaussian mutation with a
covariance-generating function Σ is given by

N 〈Σ〉 [t, f] = N
(

t−1,Σ(H(t))
)

, (26)

where N (µ,Σ) is the normal distribution and the symbol N
is overloaded to represent Gaussian mutation as well.

When the search space is binary, X = {0, 1}d, Bernoulli
mutation at rate p is given by

B 〈p〉 [t ∪ z, f] ({y})=
∏

j

p|yj−zi,j | (1− p)(1−|yj−zi,j |) .(27)

112

7.4 Formal Genetic Algorithms
An evolutionary algorithm can be defined as a quasi-evolu-

tionary algorithm with a masked crossover rule. A genetic
algorithm can then be identified as an evolutionary algo-
rithm that is also population-Markov. In contrast, evolu-
tion strategies depend on adaptive parameters and are not
usually population-Markov.

Definition 10. An optimizer G ∈ PBOK is an evolution-
ary algorithm if it is a quasi-evolutionary algorithm with a
masked crossover rule. Additionally, G is a genetic algorithm
if it is also population-Markov.
This definition encompasses most traditional evolutionary
algorithms and excludes more recent developments that still
conform to the definition of a quasi-evolutionary algorithm
as defined above. Again, a crossover rule of order one may
be used, so that every quasi-evolutionary algorithm with a
vacuous crossover rule is trivially an evolutionary algorithm.

Putting all of these pieces together, a basic genetic al-
gorithm with single-point crossover, proportional selection,
and a binary encoding can be written as

SGA〈p〉 = (PS ⋆ ((⊳PS) ⋆ SC)) ⋆ B 〈p〉 , (28)

which is Goldberg’s simple genetic algorithm with a muta-
tion rate of p [5]. The resulting algorithm is formally a ge-
netic algorithm, since it is composed of a population-Markov
selection rule, a recombination operator with masked crossover,
and a mutation operator. Most standard genetic algorithms
can be written down similarly by mixing and matching the
components described in this section.

8. CONTINUITY OF OPTIMIZERS
The adopted formalism for stochastic optimizers is useful

because it leads to general theoretical results. The char-
acterization of optimizers as a closed, convex subset of a
normed vector space in Section 5 is one such result. But
many more results are also possible. For example, the the-
ory allows one to state the conditions under which optimiz-
ers may be expected to have similar behavior on similar
problems, i.e., the conditions under which they are contin-
uous. Continuity is important because it determines when
approximations of the fitness function or the optimizer may
be used without a loss of performance. Such approximations
are already used to optimize complex fitness functions more
efficiently. The theory may also suggest that certain uncom-
putable optimizers may perform well, and continuity means
that computable approximations will perform similarly. The
section states several theorems about the continuity of ge-
netic algorithms in particular. A few proofs are omitted;
these proofs can be found in Chapter 5 of [11].

8.1 What is a Continuous Optimizer?
Optimizers are functions from a trajectory and a fitness

function to a signed measure over the search space. Conti-
nuity answers the following two questions:

• Will an optimizer choose similar points when given
similar evaluation histories?

• Will an optimizer choose similar points when given
similar fitness functions?

The first question pertains to continuity in trajectories, and
the second question to continuity in objectives.

Continuity is a topological concept. The most familiar
type of topology is the metric topology, which induces the
epsilon-delta definition of continuity. A function f that
maps one metric space (X, dX) to another metric space (Y, dY)
is continuous if for every ǫ > 0 and every point x there exists
a δ = δ(x) > 0 such that for all y with dX(x, y) < δ, it holds
that dY (f(x), f(y)) < ǫ.

The search domain X is assumed to be metric from this
point forward for simplicity, since most practical search do-
mains are metric. A metric on the space of evaluation his-
tories T [X] is then given by

dρ (t1, t2) = | |t1| − |t2| |+

|t1|∧|t2|
∑

i=1

ρ
(

ti1, t
i
2

)

, (29)

where ρ is a metric on X, ti1 is the ith element of t1, and |t1|
is the length of the trajectory t1.

Definition 11. An optimizer G ∈ MF [X] is continuous in
objectives at f if for any sequence of fitness functions {fn},
fn → f implies ||G [t, f]− G [t, fn] ||M → 0.

Definition 12. An optimizer G ∈ MF is continuous in
trajectories at t if for every ǫ > 0 there exists a δ > 0 such
that whenever dρ (t, u) < δ then ||G [t, f]− G [u, f] ||M < ǫ.

If an optimizer is continuous in objectives, then it can
be expected to perform similarly on similar problems. If
an optimizer is continuous in trajectories, then it can be
expected to make similar decisions on similar trajectories.

8.2 Continuity of Evolutionary Algorithms
In Section 6, a quasi-evolutionary algorithm was defined

as a convolution E = S ⋆R⋆V. Evolutionary algorithms can
be continuous or discontinuous, depending on the details of
the genetic operators. Mutation operators are independent
of the fitness function and therefore trivially continuous in
objectives. Typically, mutation operators are continuous in
trajectories as well, as with Bernoulli or Gaussian mutation.
Crossover rules are likewise independent of objectives and
therefore continuous over objectives. Cases where evolution-
ary algorithms as a whole are continuous or discontinuous
will be addressed with two general theorems in this sub-
section. These theorems demonstrate two distinct cases in
which a convolution can be continuous. First, a convolu-
tion A ⋆ B is continuous if both optimizers are continuous
at certain points. Second, a convolution may be continu-
ous if the right side is continuous and the left side generates
convergent samples.

In order to support the following theorem, the property of
bounded magnitude is introduced. An optimizer G ∈ MF is
of bounded magnitude if there exists a number M < ∞ such
that ||G[t, f]||M ≤ M for all t, f . Otherwise, an unbounded
sequence could cause a discontinuity. This condition is sat-
isfied trivially for any optimizer in PF .

Theorem 8.1. Let S ,V ∈ MF . Then S ⋆ V is continu-
ous in objectives (or trajectories) at t, f if both S and V are
of bounded magnitude, S is continuous in objectives (or tra-
jectories) at t, f , and for some C ∈ Bτ with |S [t, f]|(C) =
|S [t, f]|(X), V is continuous in objectives (or trajectories)
at t ∪ x, f for all x ∈ C.

Proof. Assume that S and V are continuous in both
objectives and trajectories at t, f . Fix ǫ > 0. Suppose

113

||S [u, g]||M ≤ M < ∞ and ||V[u, g]||M ≤ M for all u, g.
Let fn → f , tn → t. Let A ∈ Bτ . Then

|S ⋆ V [tn, fn] (A)− S ⋆ V [t, f] (A)|

=

∣

∣

∣

∣

∫

X

V [tn ∪ x, fn] (A)S [tn, fn] (dx)

−

∫

X

V [t ∪ x, f] (A)S [t, f] (dx)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

X

V [tn ∪ x, fn] (A)S [tn, fn] (dx)

−

∫

X

V [t ∪ x, f] (A)S [tn, fn] (dx)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

V [t ∪ x, f] (A)S [tn, fn] (dx)

−

∫

X

V [t ∪ x, f] (A)S [t, f] (dx)

∣

∣

∣

∣

≤

∫

C

|V[tn∪ x,fn](A)−V[t ∪ x,f](A)||S [tn, fn](dx)|

+

∫

X

|V [t ∪ x, f](A)||S [tn, fn](dx)−S [t, f](dx)| (30)

<
ǫ

2

1

M
|S [tn, fn]| (C)+M |S [tn, fn]−S [t, f]| (X)(31)

<
ǫ

2
+

ǫ

2
= ǫ.

To obtain Equation 31, use the fact that V is continuous on
the left side and the fact that V is of bounded magnitude on
the right. To obtain Equation 32, note that S is bounded
in magnitude by M and that S is continuous. For Equa-
tion 31, continuity is sufficient to imply that there exists an
N independent of x such that

|V [tn ∪ x, fn] (A)− V [t ∪ x, f] (A)| <
ǫ

2

1

M

for all n > N because dρ(tn ∪ x, t ∪ x) = dρ(tn, t) for all
x ∈ X, using dρ from Equation 29. This justification can be
extended to general topological spaces; the details are not
included here.

The proof above holds for jointly continuous S and V;
continuity in either objectives or trajectories separately can
be proven by repeating the equations above with tn = t or
fn = f as needed.

Theorem 8.1 can be applied to evolutionary algorithms to
deduce continuity based on the continuity of the selection
rules, the crossover rule, and the mutation operator. There
is a problem with this approach, however, since most se-
lection and crossover rules are discontinuous in some sense.
This problem can be circumvented by using the concept of
sample convergence instead.

Definition 13. An optimizer G ∈ MF is sample-convergent
in trajectories at t, f if

1. there is a trajectory ut,f ∈ T [X] s.t. {y ∈ ut,f} has
full measure on G[t, f] and |G[t, f]|({y}) > 0 for each
y ∈ ut,f ,

2. tn → t implies ∃utn,f as in the prior statement and
utn,f → ut,f , and

3. tn → t implies G[tn, f]({u
i
tn,f}) → G[t, f]({ui

t,f}) for
all 1 ≤ i ≤ |ut,f |.

If the above statements hold when tn → t is replaced with
fn → f , then G is sample-convergent in objectives at t, f .

A sample drawn from a sample-convergent optimizer con-
verges along a sequence of trajectories or objectives. That
is, if Yt,f ∼ G[t, f] for all t, f , then Ytn,fn converges in distri-
bution to Yt,f when tn, fn → t, f . Sample convergence can
make a convolution be continuous.

Theorem 8.2. Suppose G ∈ MF . If G can be written as
A ⋆ B where A and B are both of bounded magnitude, A is
sample convergent in objectives (or trajectories) at t, f with
trajectory ut,f as above, and B is continuous in objectives (or
trajectories) at t∪x, f for all x ∈ ut,f , then G is continuous
in objectives (or trajectories) at t, f .

Proof. Without loss of generality, suppose A is sample
convergent in both objectives and trajectories at t, f and
that B is continuous in both objectives and trajectories at
t, f . Fix ǫ > 0 and suppose A ≤ M < ∞ and B ≤ M . The
optimizer G can be written as

G[t, f](A) =

|ut,f |
∑

i=1

A[t, f]({ui
t,f}) B[t ∪ ui

t,f , f](A). (32)

To reduce notation, let N = |ut,f |, p(i, t, f) = A[t, f]({ui
t,f}),

and νi,t,f (A) = B[t ∪ ui
t,f , f](A). Then the above can be re-

stated as

G[t, f](A) =
N
∑

i=1

p(i, t, f) νi,t,f (A). (33)

Suppose now that tn → t and fn → f . Because A is sam-
ple convergent, it follows that p(i, tn, fn) → p(i, t, f). Also,
νi,tn,fn(A) → νi,t,f since B is continuous. But then

|G[t, f](A) − G[tn, fn](A)|

≤
∑N

i=1 |p(i, t, f)νi,t,f (A)− p(i, tn, fn)νi,tn,fn(A)|

≤
∑N

i=1 |p(i, t, f)νi,t,f (A)− p(i, t, f)νi,tn,fn(A)|

+

N
∑

i=1

|p(i, t, f)νi,tn,fn(A)− p(i, tn, fn)νi,tn,fn(A)|

=
∑N

i=1 |p(i, t, f)| |νi,t,f (A)− νi,tn,fn(A)|

+
N
∑

i=1

|νi,tn,fn(A)| |p(i, t, f) − p(i, tn, fn)|

≤ M

N
∑

i=1

[ǫ

2NM
+

ǫ

2NM

]

= ǫ (34)

where the next to last line follows from the convergence of
p and ν mentioned above and from the bounded magnitude
of A and B. Thus G is continuous in both objectives and
trajectories at t, f . To show G is only continuous in objec-
tives or trajectories separately, repeat the above steps with
tn = t or fn = f .

Corollary 8.3. A quasi-evolutionary algorithm is con-
tinuous in objectives at t, f if its selection rules are sample-
convergent in objectives at t, f .

The next theorem states that masked crossover rules are
sample-convergent if they have sample-convergent selection
rules. Since most crossover rules are masked crossover rules,
the continuity of most evolutionary algorithms depends only
on the sample convergence of the selection rule.

114

Theorem 8.4. The convolution of a selection rule and
a recombination operator with a masked crossover rule is
sample-convergent in objectives (or trajectories) at t, f if its
selection rules are also sample-convergent in objectives (or
trajectories) at t, f .

Proof. Suppose X is a d-dimensional vector space, so
that a masked crossover rule can be applied. Let S be a
selection rule that is sample convergent in both trajectories
and objectives. Let R be a recombination operator with a
masked crossover rule. Then

S ⋆R = S ⋆ (⊳S1 ⋆ (· · · ⋆ (⊳n−1Sn−1 ⋆ C<PM >)))

for sample convergent selection rules S1, . . . ,Sn−1 and a
masked crossover rule C < PM > of order n. Assume for
now that each selection rule is sample convergent in both
objectives and trajectories at t, f . Let S0 = S to simplify
the notation.

For all t, f there is a trajectory ui,t,f for each selection rule
Si with i = 0, . . . , n− 1 such that Si[t, f]({y ∈ ui,t,f}) = 1.
There are nd possible crossover masks, and each selection
rule can only select one of |ui,t,f | points. Thus there are
exactly nd ∏

i |ui,t,f | < ∞ points that can result from re-
combination, and these points may be enumerated within
a trajectory ũt,f , where the order of enumeration is inde-
pendent of t and f . To be specific, for each position k in
ũt,f there is a crossover mask mk and an index to a se-
lected parent pi,k for each selection rule i such that mk

and (pi,k)
n
i=1 depend solely on the position k and not on

t, f . Recalling Equation 23, ũk
t,f =

∑n
i=1 m

k ⊗i u
pi,k
i,t,f , and

S ⋆R[t, f]({y ∈ ũt,f}) = 1.
Suppose tn → t and fn → f . Then ui,tn,fn → ui,t,f for

each selection rule Si. Let x = ũk
t,f , the kth element of

the trajectory ũt,f . Then x is generated from a particular
crossover mask m determined by the position k. Suppose m
has the value j in the ℓth component, i.e. mℓ = j. Then xℓ =
(

uk
j,t,f

)

ℓ
. Let xn = ũk

tn,fn . Then because the enumeration

order was fixed, xn
ℓ =

(

uk
j,tn,fn

)

ℓ
. Since uj,tn,fn → uj,t,f , it

follows that xn
ℓ → xℓ. But k, j, and ℓ were arbitrary, so it

follows that ũtn,fn → ũt,f .
Again, suppose tn → t and fn → f . Let m be the

crossover mask for uk
t,f , and let yi = u

pi,k
i,t,f be the point

selected on t, f by the ith selection rule at the kth position
in the enumeration. Observe that

S ⋆R[t, f]({ũk
t,f}) = PM (m)

∏

i

Si[t, f]({yi}). (35)

Let yn
i = u

pi,k
i,tn,fn

be the point selected on tn, fn by the

ith selection rule at the kth position in the enumeration
and note that (1) yn

i → yi, (2) ũk
tn,fn → ũk

t,f , and (3)
the particular mask m is a function of the position k in-
dependent of t, f . Since PM (m) is independent of t, f and
Si[tn, fn]({y

n
i }) → Si[t, f]({yi}) for all i, it follows that

S ⋆R[tn, fn]({ũ
k
tn,fn}) → S⋆R[t, f]({ũk

t,f}). Therefore S ⋆R
is sample convergent at t, f . To show that S ⋆R is only con-
vergent in either trajectories or objectives, repeat the above
with fn = f or tn = t.

Corollary 8.5. An evolutionary algorithm with a masked
crossover rule is continuous in trajectories (or objectives) at
t, f if its selection rules are sample convergent in trajectories
(or objectives) at t, f and its mutation operator is continuous
in trajectories (or objectives) at t ∪ x, f for all x generated
by masked crossover of elements in t.

As a final piece of the puzzle, proportional selection is
sample-convergent on C[X] under certain conditions. 3 Re-
call that PS 〈g〉 from Equation 21 is generalized proportional
selection with a modulating function g. The theorem below
implies that the simple genetic algorithm is continuous.

Theorem 8.6. Proportional selection with modulating func-
tion g is sample convergent on all trajectories and all objec-
tives in C[X] if g is continuous in both arguments and for

every pair t, f with f ∈ C[X], hk(u, f̃) = g(u, f̃(H(u)−1,k))
is bounded on some neighborhood of t, f for all 1 ≤ k ≤ K.

Proof. To make the proof simpler, use unnormalized
proportional selection,

UPS<g> [t, f] (B) =
K
∑

k=1

g(t, f
(

H(t)−1,k
)

)1B(H(t)−1,k),

(36)
noting that H(t)−1 is a sequence that may repeat points.

Suppose tn → t and fn → f . Without loss of gener-
ality, suppose fn is continuous, as we may, since continu-
ous functions are dense in C[X]. Clearly, the set Pt,f =
{

y ∈ H(t)−1
}

has full measure on UPS[t, f] for all t, f , and

H(tn)
−1 → H(t)−1 in XK (or in T [X]). It remains to show

that

UPS [tn, fn](
{

H(tn)
−1,k

}

) → UPS[t, f](
{

H(t)−1,k
}

)

for all k. The definitions imply
∣

∣UPS[tn, fn](
{

H(tn)
−1,k

}

) − UPS[t, f](
{

H(t)−1,k
}

)
∣

∣

=
∣

∣g(tn, fn
(

H(tn)
−1,k

)

)− g(t, f
(

H(t)−1,k
)

)
∣

∣ . (37)

Now fn is continuous and fn → f , so for any ǫ > 0,
∣

∣fn
(

H(tn)
−1,k

)

− f
(

H(t)−1,k
)
∣

∣

≤
∣

∣fn
(

H(tn)
−1,k

)

− fn
(

H(t)−1,k
)∣

∣

+
∣

∣fn
(

H(t)−1,k
)

− f
(

H(t)−1,k
)∣

∣

< ǫ
2
+ ǫ

2
= ǫ. (38)

Since g is continuous in both arguments, it follows that UPS
is sample convergent at t, f . Because g is bounded near t, f ,
the desired conclusion follows by normalizing UPS.

Corollary 8.7. The simple genetic algorithm of Equa-
tion 28 is jointly continuous in trajectories and objectives.

Proof. Recall that

SGA<p>= (PS<|x|> ⋆ ((⊳PS<|x|>) ⋆ SC)) ⋆ B<p>,

where the objective is assumed to be negative (for minimiza-
tion). The search space is {0, 1}d with the discrete topol-

ogy (i.e. all sets are open), and therefore C[{0, 1}d] = RX .
The function g(t, x) = |x| is continuous. The fitness func-
tion f is bounded, since f can only take finitely many val-
ues on X. Fix ǫ > 0. Then for any f , the set Nf

ǫ =
{u, f̃ | supx∈X |f̃(x) − f(x)| < ǫ} forms a neighborhood

of t, f on which f̃ and therefore g is bounded, and hence
the neighborhood requirement of Theorem 8.6 is satisfied.
Thus PS<|x|> is sample convergent everywhere by Theo-
rem 8.6. The Bernoulli mutation operator B<p> is jointly

3C[X] ⊆ RX consists of all continuous real functions and
their pointwise limits, including functions with jump dis-
continuities or point discontinuities.

115

continuous. Single-point crossover SC is a masked crossover
rule, so Corollary 8.5 implies that SGA is jointly continuous
everywhere.

Genetic algorithms in any space are jointly continuous on
all trajectories and objectives in C[X] when they use masked
crossover and proportional selection with a continuous mod-
ulating function. For example, a real-coded genetic algo-
rithm with proportional selection, uniform crossover, and
Gaussian mutation is continuous in this way.

Proportional selection is no longer commonly used as a
selection rule; it has been replaced by rank-based methods
such as tournament selection. Whereas proportional selec-
tion makes a genetic algorithm continuous, rank-based se-
lection is discontinuous at some points. The following sub-
section identifies these discontinuities, leading up to a full
characterization of when these selection rules are continuous.

8.3 Discontinuity of Some Methods
Sample convergence was used to show that many genetic

algorithms are continuous on a large set of objectives. These
results also have a converse; selection rules whose samples
diverge are a source of discontinuities in the optimizer.

Definition 14. An optimizer G ∈ MF is sample-divergent
in trajectories at t, f if

1. there is a trajectory ut,f ∈ T [X] s.t. {y ∈ ut,f} has
full measure on G[t, f] and G[t, f]({y}) > 0 for each
y ∈ ut,f ,

2. tn → t implies ∃utn,f as in the prior statement, and
utn,f → ut,f ,

3. tn → t implies G[tn, f]({u
i
tn,f}) 9 G[t, f]({ui

t,f}) for
some 1 ≤ i ≤ |ut,f |.

If the above statements hold when tn → t is replaced with
fn → f , then G is sample-divergent in objectives at t, f .

The first two properties of sample divergence are identi-
cal to those for sample-convergence, but the final properties
are opposites. Any optimizer G together with any pair t, f
that meets the first two requirements must be either sample-
convergent or sample-divergent and cannot be both, since
the trajectory with full measure must be unique.

Theorem 8.8. Suppose G ∈ MF. If G can be written as
A ⋆ B where A and B are both of bounded magnitude, A is
sample divergent in objectives (or trajectories) at t, f , and B
is continuous in objectives (or trajectories) at t, f , then G is
discontinuous in objectives (or trajectories) at t, f provided
that for all x ∈ ut, f for A, B[t ∪ x, f] 6= 0.

Proof. Without loss of generality, assume thatA is sam-
ple divergent in both objectives and trajectories at t, f and
that B is continuous in both objectives and trajectories at
t, f . Adopt notation for G as in Equation 33. Suppose
A ≤ M < ∞ and B ≤ M . Then there exist sequences tn → t
and fn → f and some i such that p(i, tn, fn) 9 p(i, t, f), i.e.
there is some constant c1 > 0 such that for any N , there
exists m > N with |p(i, tm, fm) − p(i, t, f)| ≥ c1. There
is also a set A ∈ Bτ such that |νi,t,f |(A) = c2 > 0, since
B[t ∪ ui

t,f , f] 6= 0. The following inequalities hold:

||G[t, f]− G[tn, fn]||M ≥ |G[t, f](A)− G[tn, fn](A)|

≥ |p(i, t, f)νi,t,f (A)− p(i, tn, fn)νi,tn,fn(A)|

≥ |[p(i, t, f)− p(i, tn, fn)] νi,t,f (A)

+ p(i, tn, fn) [νi,t,f (A)− νi,tn,fn(A)]| . (39)

Because A is bounded by M , |p(i, t, f)| ≤ M , and because B
is continuous at t, f , there is some N0 such that for m > N0,
|νi,t,f (A)− νi,tm,fm(A)| < c1c2

2M
. Therefore

|p(i, t, f) [νi,t,f (A)− νi,tm,fm(A)]| <
c1c2
2

.

On the other hand, regardless of the value of N0, m can be
chosen so that |p(i, t, f)− p(i, tm, fm)| ≥ c1 and hence

|[p(i, t, f) − p(i, tn, fn)] νi,t,f (A)| ≥ c1c2.

Consequently,

||G[t, f]− G[tm, fm]||M > c1c2 −
c1c2
2

=
c1c2
2

, (40)

and this inequality holds for any value of N ≥ N0. Thus
||G[t, f]−G[tn, fn]||M does not converge, and G is discontin-
uous at t, f .

Theorem 8.4 stated that a masked crossover rule preserves
sample convergence from its selection rules. As an analogue,
masked crossover also preserves sample divergence. The fol-
lowing Theorem and Corollary can be proven in a similar
way to Theorem 8.4 and its corollaries, and so the proofs
are omitted.

Theorem 8.9. A recombination operator with a masked
crossover rule is sample-divergent in objectives (or trajecto-
ries) at t, f if all of its selection rules are sample-divergent
in objectives (or trajectories) at t, f .

Corollary 8.10. An evolutionary algorithm with a mask-
ed crossover rule is discontinuous in objectives (or trajecto-
ries) at t, f if all of its selection rules are sample-divergent
in objectives (or trajectories) at t, f and its mutation oper-
ator is continuous in objectives (or trajectories) at t ∪ x, f
for all x generated by masked crossover of elements in t.

Theorem 8.6 showed that generalized proportional selec-
tion is sample-convergent where the modulating function is
continuous on the image of the fitness. Conversely, propor-
tional selection is sample-divergent when the composition of
the modulating function and the objective is discontinuous.

Theorem 8.11. Proportional selection with modulating
function g is sample divergent in objectives (or trajectories)

at t, f whenever hk(u, f̃) = g(u, f̃(H(u)−1,k)) is discontinu-
ous in objectives (or trajectories) at t, f and bounded away
from zero on some neighborhood of t, f for all 1 ≤ k ≤ K,
i.e., |hk(u, f̃)| > c > 0.

Proof. Suppose tn → t and fn → f but hk(tn, fn) 9

hk(t, f). As in the proof of Theorem 8.6, use unnormalized
proportional selection, UPS. Also as in that proof, UPS
meets the basic requirements of sample divergence (or con-
vergence), i.e. ut,f = H(t)−1 and Pt,f = {y ∈ H(t)−1} has
full measure. Let xn

k = H(tn)
−1,k. Then

|UPS[tn, fn]({x
n
k}) − UPS[t, f]({xk})|

= |hk(tn, fn)− hk(t, f)| . (41)

That is, UPS[tn, fn]({x
n
k}) 9 UPS [t, f]({xk}). Because hk

is bounded away from zero, normalization yields that PS is
sample divergent at t, f .

Theorem 8.11 can be leveraged to conclude that tourna-
ment selection (and, by extension, any selection rule based

116

on rank) is sample-divergent on the majority of objectives
for trajectories that have distinct points with the same fit-
ness.

Definition 15. A trajectory t ∈ T [X] is of ambivalent
fitness at degree K on a fitness function f if there exist
points x, y ∈ H(t)−1 for population size K with x 6= y but
f(x) = f(y). Otherwise, t is of unambivalent fitness at de-
gree K on f . The trajectory t is ambivalent at full degree if
K = |t|; the degree may be omitted if clear from the context.

Theorem 8.12. Tournament selection (Equation 22) with
selection pressure q ∈ [0, 1) is sample divergent in objectives
at every objective on trajectories of ambivalent fitness at the
degree of the selection rule.

Proof. Let R(y, f, P) be the ranking function of Sec-
tion 7. Tournament selection over the whole population is
proportional selection with hk(u, f̃) in the statement of The-
orem 8.11 given by

hk(u, f̃) = (1− q)R(H(u)−1,k,f̃ ,H(u)−1). (42)

This hk is bounded away from zero everywhere, so Theo-
rem 8.11 implies that tournament selection is sample diver-
gent at the discontinuities of hk. Now hk is a continuous
function of R(H(u)−1,k, f̃ , H(u)−1), and thus its disconti-
nuities are exactly the discontinuities of R.

Let f be any non-monotonic objective and let t be a trajec-
tory of ambivalent fitness on f at the degree of the selection
rule, so that there are two points y and z in H(t)−1 with
y 6= z and f(y) = f(z), where z occurs later in the pop-
ulation. Next, construct fn so that fn(z) = f(z) + 1

n
and

fn(x) = f(x) for all x 6= z. Then fn → f , and

R(z, fn,H(t)−1)−R(y, fn,H(t)−1) > 0

is a positive constant independent of n, i.e. y is ranked
higher than z, and thus has a lower index in the ranked
population. But according to the disambiguation rule in
Section 7,

R(z, f,H(t)−1)−R(y, f,H(t)−1) < 0,

that is, y is ranked lower than z at the limit and has a
higher index in the population. Therefore R is discontin-
uous in objectives at t, f , and by consequence tournament
selection is discontinuous in objectives at t, f as well. If the
tie-breaking procedure is reversed, the proof still holds by
using fn(z) = f(z)− 1

n
instead.

Trajectories of ambivalent fitness have measure zero in
the optimization process generated by tournament selection,
unless the fitness function has a plateau. Even on func-
tions with many small plateaus, trajectories of ambivalent
fitness will rarely be encountered. If trajectories of ambiva-
lent fitness are avoided, then tournament selection is sample-
convergent.

Theorem 8.13. Tournament selection is sample-conver-
gent in objectives in C[X] at trajectories of unambivalent
fitness.

Proof. As in the proof of Theorem 8.12, tournament and
ranking selection are sample divergent at exactly the points
where R is discontinuous. Let f ∈ C[X], and let t be a
trajectory that is of unambivalent fitness on f at the degree
of the selection rule. Assume fn → f . Then there is an

N such that R(x, fn,H(t)−1) = R(x, f,H(t)−1) for n > N ,
since the population size K is finite, and any finite set of
points in R can be separated by disjoint open sets. But
then R is continuous on f at t, and therefore tournament
and ranking selection are sample convergent by Theorem 8.6
using hk from the proof of Theorem 8.12.

Thus a genetic algorithm with tournament selection is
continuous almost surely on fitness functions without
plateaus; the same fact holds for any rank-based selection
mechanism, e.g. ranking selection or truncation selection.
These facts provide a complete picture of exactly when com-
mon genetic algorithms can be expected to behave similarly
on similar problems. This result is particularly useful, since
it provides theoretical justification for methods that approx-
imate fitness functions such as metamodeling or surrogates
in evolutionary computation.

9. DISCUSSION AND FUTURE WORK
This paper presented a formal measure-theoretic approach

that identifies iterative stochastic optimizers as a closed,
convex subset of a normed vector space. This approach pro-
vides a rich setting within which powerful theorems about
optimization methods can be proven. It has been shown
in detail how genetic algorithms fit in to this framework.
To demonstrate a first taste of what is possible using these
theoretical tools, a full characterization of the continuity of
genetic algorithms was provided.

These results are a promising beginning of what can po-
tentially be proven with these tools. This formal framework
can be used for many innovative tasks: to define and rea-
son about explicit performance criteria; to prove generalized
NFL theorems, including necessary and sufficient conditions
for arbitrary fitness priors; and to establish rigorously a
mathematical duality between problems and the optimizers.
See [11] for a more detailed discussion of these matters.

The convexity of optimizer space as proven in this pa-
per suggests that better performance on a particular prob-
lem may be achieved by blending two known optimizers
convexly; this claim is supported by preliminary experi-
ments [11]. The optimizer-to-objective duality that can be
defined based on these results can be used as a starting point
for meta-optimization or to examine the question of optimal
optimization for a given problem class. These topics and
others will be explored in future work.

10. CONCLUSION
Overall, a rigorous formal approach to optimization may

lead to new optimization methods and new ways of config-
uring and improving existing methods. Such an approach
can help to organize the profusion of new and diverse opti-
mization methods as well as guide new research. The theory
in this paper constitutes a first step towards these goals.

11. REFERENCES

[1] Auger, A., and Teytaud, O. Continuous lunches
are free! In Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation
(GECCO-2007) (New York, 2007), ACM Press.

[2] Billingsley, P. Probability and Measure. John Wiley,
1986.

117

[3] Cohn, D. Measure Theory. Birkhauser, Boston, MA,
1980.

[4] El-Beltagy, M., Nair, P. B., and Keane, A. J.

Metamodeling techniques for evolutionary
optimization of computationally expensive problems:
Promises and limitations. In GECCO’99 (1999),
pp. 196–203.

[5] Goldberg, D. E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1989.

[6] Halmos, P. Measure Theory. Springer-Verlag, New
York, NY, 1974.

[7] Jin, Y. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and
Evolutionary Computation 1, 2 (2011), 61 – 70.

[8] Kirkpatrick, S., Gelatt, C. D., and Vecchi,

M. P. Optimization by simulated annealing. Science
220, 4598 (1983).

[9] Lehman, J., and Stanley, K. O. Abandoning
objectives: Evolution through the search for novelty
alone. Evolutionary Computation 19, 2 (2011).

[10] Lockett, A., and Miikkulainen, R. Real-space
evolutionary annealing. In Proceedings of the 2011
Genetic and Evolutionary Computation Conference
(GECCO-2011) (2011).

[11] Lockett, A. J. General-Purpose Optimization
Through Information Maximization. PhD thesis,
University of Texas at Austin, 2012.

[12] Munkres, J. R. Topology. Prentice Hall, Upper
Saddle River, NJ, 2000.

[13] Radcliffe, N., and Surry, P. D. Fundamental
limitations on search algorithms: Evolutionary
computing in perspective. In LECTURE NOTES IN
COMPUTER SCIENCE 1000 (1995),
Springer-Verlag, pp. 275–291.

[14] Rowe, J. E., Vose, M. D., and Wright, A. H.

Reinterpreting no free lunch. Evolutionary
Computation 17, 1 (2009).

[15] Schaul, T., Sun, Y., Wierstra, D., Gomez, F.,

and Schmidhuber, J. Curiosity-Driven Optimization.
In IEEE Congress on Evolutionary Computation
(CEC) (2011).

[16] Schumacher, C., Vose, M. D., and Whitley,

L. D. The no free lunch and problem description
length. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001 (2001),
Morgan Kaufmann, pp. 565–570.

[17] Vose, M. The Simple Genetic Algorithm. MIT Press,
Cambridge, Massachusetts, 1999.

[18] Vose, M. D. Random heuristic search. Theoretical
Computer Science 229 (1999), 103–142.

[19] Wolpert, D. H., and Macready, W. G. No free
lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1, 1 (1997).

118

