
Neuroannealing

Martingale-driven Optimization for Neural Networks

Alan J. Lockett
IDSIA

Galleria 2
6928 Manno-Lugano, Switzerland

alan.lockett@gmail.com

Risto Miikkulainen
University of Texas at Austin

Austin, TX, 78712
risto@cs.utexas.edu

ABSTRACT
Neural networks are effective tools to solve prediction, mod-
eling, and control tasks. However, methods to train neu-
ral networks have been less successful on control problems
that require the network to model intricately structured re-
gions in state space. This paper presents neuroannealing,
a method for training neural network controllers on such
problems. Neuroannealing is based on evolutionary anneal-
ing, a global optimization method that leverages all available
information to search for the global optimum. Because neu-
roannealing retains all intermediate solutions, it is able to
represent the fitness landscape more accurately than tradi-
tional generational methods and so finds solutions that re-
quire greater network complexity. This hypothesis is tested
on two problems with fractured state spaces. Such problems
are difficult for other methods such as NEAT because they
require relatively deep network topology in order to extract
the relevant features of the network inputs. Neuroannealing
outperforms NEAT on these problems, supporting the hy-
pothesis. Overall, neuroannealing is a promising approach
for training neural networks to solve complex practical prob-
lems.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms

Keywords
evolutionary annealing, martingale optimization, neural net-
works, evolutionary computation, genetic algorithms, neu-
roevolution, neuroannealing, applied measure theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

1. INTRODUCTION AND MOTIVATION
Neural networks are effective tools to solve prediction,

modeling, and control tasks. However, methods to train
them have been less successful on control problems that re-
quire the network to model intricately structured regions in
state space. Such problems have a fractured state space, for
which the decision boundaries cannot be well represented
by shallow networks due to the mathematical properties of
the neurons and their activation. Kohl [3] exhibited sev-
eral problems with fractured state spaces, such as recog-
nizing concentric spirals and implementing a multiplexer for
address-based lookup. Importantly, many practical domains
are also fractured and require complex decision boundaries;
Kohl examined robotic keepaway soccer as one example.

Kohl studied fractured problems in the context of NEAT [3],
an evolutionary method for neural networks developed by
Stanley and Miikkulainen [8]. In principle, NEAT is capa-
ble of learning arbitrarily deep and complex networks, but
in practice it rarely does so. A neural network defines a
map between input states and output states. Kohl demon-
strated that NEAT’s performance tends to degrade with the
complexity of the problem, as determined by its total vari-
ation, that is, the maximum cumulative change in fitness
value along any non-self-intersecting path through the in-
put space.

Kohl showed that the performance of NEAT degrades as
the total variation of the problem increases, a property that
he termed fracture [3]. As Kohl observed, when NEAT does
succeed in fractured domains, the successful networks tend
to be larger, allowing them to encode higher complexity.
Kohl proposed several methods for solving fractured prob-
lems, but these solutions required using nonstandard acti-
vation functions or iteratively freezing network weights. A
more principled approach would be to construct a learning
method for neural networks that makes it possible to con-
struct deeper and larger networks systematically.

This paper presents neuroannealing, a method for train-
ing neural network controllers on problems that require deep
network topologies to represent the relevant structure of
the search space. Neuroannealing uses evolutionary com-
putation in order to search the space of neural networks, a
process referred to as neuroevolution [1, 8, 2]. By using a
martingale-driven optimization method, neuroannealing is
able to search for and discover larger and deeper networks
than has been previously possible using other methods.

Neuroannealing is based on evolutionary annealing [4, 5],
a global optimization method that employs a martingale ap-
proximation in order to leverage information about the fit-

In Proceedings of the 2013 Genetic and Evolutionary Computation Conference

(GECCO-2013) 2013. ACM Press.

ness function obtained from successive evaluations. In Eu-
clidean space, its performance is comparable to or better
than other general-purpose optimizers on certain problems
with complex fitness structure [5]. Like other evolution-
ary annealing approaches, neuroannealing does not forget
any intermediate solutions and so is able to represent fit-
ness landscapes more accurately than traditional methods.
Neuroannealing finds solutions that require greater network
complexity than is usually obtained with methods such as
NEAT and as a consequence is more capable of solving frac-
tured problems.

In this paper, this hypothesis is tested on two of the prob-
lems with fractured state spaces proposed by Kohl, the con-
centric spirals problem and the multiplexer problem. Also,
neuroannealing is tested on the classic double pole-balancing
problem. Overall, neuroannealing is a promising approach
for training neural network controllers to solve complex prob-
lems.

In the next section, the evolutionary annealing framework
is introduced, after which neuroannealing is presented as a
specific instantiation of this method.

2. EVOLUTIONARY ANNEALING
Evolutionary annealing is an evolutionary algorithm with

a selection operator that can select any member of any pre-
vious population by sampling from a Boltzmann distribu-
tion like that used in simulated annealing. It can be used
with any mutation operators, and it may or may not use
crossover. Evolutionary annealing differs from other evolu-
tionary methods in that its selection mechanism is designed
to guarantee full coverage of the search domain. The per-
formance of evolutionary annealing for Euclidean space was
explored by Lockett and Miikkulainen [4, 5] for a particu-
lar instantiation of the algorithm in Euclidean space with no
crossover and Gaussian mutation. In this section, the unique
selection mechanism for evolutionary annealing is described
in its general form so that the approach can be applied to
train neural networks in later sections.

2.1 Evolutionary Annealing Motivation
An evolutionary algorithm learns about the structure of

a fitness function by evaluating potential solutions in a se-
quence of populations. The original genetic algorithms were
population-Markov, meaning that each population was dis-
carded after being evaluated and reproduced to form the
next population. A population-Markov algorithm explores
the search space at random, forgetting where it has been.

Early on, this feature was recognized as a deficiency for
the static fitness functions, i.e., fitness function that do not
change as evaluations progress. Many modern evolution-
ary methods use some form of summary or average to re-
tain information about previously evaluated solutions; such
techniques include elitism and (µ+λ)-selection. These algo-
rithms have proven that remembering information derived
from fitness evaluations can help locate the optima.

Evolutionary annealing takes this concept to its full ex-
tent. Rather than generating a summary, it stores the re-
sults of all evaluations in order to build a model of the fitness
function that it can use to search the space more efficiently.
Because computer memory is cheap, it is practical to do so
for a wide range of optimization problems. The experiments
in this paper run entirely in memory and do not exceed one
gigabyte of RAM. The challenge for this approach is to find

a way to use this information effectively. The next sub-
section discusses how evolutionary annealing addresses this
challenge.

2.2 Annealed Selection
Evolutionary annealing organizes its search by partition-

ing the search domain into a set of disjoint regions, one for
each previously evaluated solution. The partition is rep-
resented by a binary tree, which can be traversed in loga-
rithmic time in the average case. Higher nodes in the tree
represent the union of the regions that they span, and the
root represents the entire search domain.

The search domain is assumed to be a Hausdorff topolog-
ical space (X, τ), where X is the set of acceptable solutions,
and τ is a topology, that is, a list of the open sets for the do-
main that are used to determine which points in the search
domain are close and which sequences converge. Addition-
ally, the space is assumed to be a measure space with a
measure λ that is Borel-measurable for the given topology
and finite on the search domain. The measure λ assigns
a volume to each region and may be thought of as deter-
mining the size of a partition region. As a simple example,
any closed subset of Euclidean space with the Euclidean dis-
tance and the standard notion of volume (i.e., λ(B) =

∫
B
dx)

meets these requirements, as does any finite space with the
counting measure (λ(B) = |B|).

As each population is evaluated, the members of the popu-
lation are inserted into the partition tree using Algorithm 1,
described in Section 3.3. In general, an evolutionary anneal-
ing algorithm requires a method for separating an existing
partition region into two smaller regions, one for each of two
evaluated solutions that fall within the existing region. This
paper only describes the mechanism for neural networks;
see [5] for details in other spaces.

Evolutionary annealing uses an annealed selection mech-
anism that selects a previous member of the population by
walking a partition tree from the root to a leaf, performing
a Bernoulli trial at each node in order to decide which child
will be selected. The sample probability for these Bernoulli
trials is chosen to achieve a particular probability distribu-
tion over the leaf nodes, that is, over all previously eval-
uation solutions, as described next. The partition-backed
annealed selection mechanism is the distinguishing feature
of evolutionary annealing; the motivation for this approach
as well as its relationship to simulated annealing and genetic
algorithms is discussed in detail in [5]. In the terminology
of stochastic processes, the sequence of partitions forms a
filtration, and at fixed temperature, evolutionary annealing
is an approximate martingale. Thus evolutionary annealing
is described as a martingale-driven optimization method.

Lockett and Miikkulainen [5] discussed two different meth-
ods for choosing the probability distribution over the previ-
ously evaluated solutions, one based on proportional selec-
tion, and one based on tournament selection. Neuroanneal-
ing uses the tournament selection variant because it is less
sensitive to problem scaling and performs better experimen-
tally. Like simulated annealing, these methods use a cool-
ing schedule in order to achieve asymptotic convergence. A
cooling schedule is a sequence of temperatures (Tn)n∈N such
that Tn → 0 asymptotically. The schedule T−1

n = η logn is
used for neuroannealing, where η is a learning rate that can
be increased or decreased to speed up or slow down search.
The value η = .1 is used for neuroannealing.

Tournament annealing views the selection problem as a
sequence of contests between members of the population, de-
cided probabilistically according to their fitness rank. The
best member of all previous populations is chosen with prob-
ability q. If it is not selected, then the next best member
is selected with probability q, and so on. Let An ⊆ X be
the set of all individuals evaluated after n populations. The
probability of selecting a point x ∈ An is given by

p(x) = ξ−1
n q1/Tn

(
1− q1/Tn

)rank(x)
λ(Exn), (1)

where ξn is a normalizing factor, f is the fitness function,
and Exn is the partition region containing x after the nth pop-
ulation is evaluated and inserted into the partition tree. The
function rank(x) is the index of x in An when An is sorted
by fitness, so that the best solution so far has rank(x) = 0.
The parameter value q = 0.025 is generally fixed, since the
actual value can be varied by changing the cooling schedule.
The region weight λ(Exn) is used to promote exploration of
the search space.

It is possible to derive a tree sampling algorithm for tour-
nament annealing, but a second tree is needed to sort the
solutions by fitness. This tree is termed the score tree. Each
leaf of the tree is associated with exactly one partition re-
gion and exactly one previously evaluated solution. The tree
is generated by inserting each partition region into the tree
one at a time. The region is inserted in such a way that
the leaves are ordered from left to right based on the fitness
of the previously evaluated solution within the partition re-
gion. This tree can be balanced for efficient traversal, and
the sampling algorithm can rely on the left child of each
non-leaf node as containing higher ranks.

In order to sample the score tree for selection, the node
sampling probabilities are needed. Define

q̃ (h, T) =
1

(1− q1/T)
(2h)

(2)

to be a temperature-adjusted selection probability, where h
is the height of the current node and T is the temperature.
Suppose that at node ν, the sampler must choose between
left child µ and right child κ, so that µ contains points with
better fitness. Then given temperature T , the probability of
selecting µ should be

PT (µ | ν) =
q̃ (h, T)λ (µ)

q̃ (h, T)λ (µ) + (1− q̃ (h, T))λ (κ)
, (3)

where λ (µ) and λ (κ) are the cumulative weights of the par-
tition regions of the points in the span of µ and κ, respec-
tively. It is shown in [5] that choosing µ or κ according to
Equation 3 will result in a probability over the points at
the leaf nodes equal to Equation 1. Neuroannealing uses
tournament annealing exclusively.

Because the selection mechanisms for evolutionary anneal-
ing are complex, a reference implementation is provided for
reproducibility at http://pypi.python.org/pypi/PyEC. It in-
cludes the implementation of neuroannealing.

In order to apply evolutionary annealing, one must make
the algorithm concrete for a particular search domain. The
next section describes how evolutionary annealing can be
used to search the space of recurrent neural networks (RNNs).

3. NEUROANNEALING
In order to apply evolutionary annealing to the space of

neural networks, three components must be defined: (1) a

base measure over neural networks, (2) an algorithm for par-
titioning sets of neural networks, and (3) a sequence of mu-
tation distributions likely to improve the fitness value of a
network. This section proposes a particular approach to
defining these components that is collectively termed neu-
roannealing. First, the concept of a layer of nodes is intro-
duced as a building block for RNNs, and then each of the
three components are described in turn.

3.1 Layered RNNs
Neuroannealing searches the space of RNNs for the opti-

mal networks to solve a control problem. In order to gen-
erate different network topologies, neuroannealing stochas-
tically adds and removes new links and nodes to existing
networks. In addition, neuroannealing organizes nodes into
layers and provides mutation operators to add and remove
entire layers of neurons. A layer is a group of nodes such that
within a layer, all nodes are of the same type, either inputs,
outputs, or hidden nodes. In a layered RNN, links intercon-
nect neural layers, so that two nodes are connected if and
only if their respective layers are connected. Links between
two layers are associated with a weight matrix containing
the connection strengths between each layer’s nodes.

The concept of layers is standard when training neural
networks using supervised techniques. Layers merely add a
conceptual separation that is useful for computational effi-
ciency, since it reduces the number of weights that must be
stored and multiplied. In neuroannealing, layers also play a
role in allowing the structure of the network to expand in
useful ways. Neuroannealing probabilistically inserts layers
that are designed to store the prior state of another layer,
providing a natural way for RNNs to develop an otherwise
improbable memory.

To represent a NEAT RNN as a layered network, each
node can be assigned to its own layer. The effect on neu-
roannealing’s optimization ability can be tested by enforcing
this property on all proposed networks.

3.2 Base Measure for RNNs
The measure over RNNs used by neuroannealing is built

up from simpler measures. The space of layered RNNs can
be partitioned according to the following four features: (1)
the number of layers `, (2) the number of nodes in each layer
s, (3) the connectivity pattern among the links c, and (4)
the weight values w. A layered RNN representation can be
identified exactly by the tuple (`, s, c, w). The base measure
is constructed by addressing each of these items in reverse.
Since the value of the base measure appears in the selec-
tion probability for the next population of networks (Equa-
tion 1), networks that are preferred by the base measure will
be explored more thoroughly. In general, one wishes to em-
phasize smaller, less complex networks without penalizing
extra structure too severely.

The first three criteria above comprise the network topol-
ogy. If `, s, and c are all fixed, then an RNN may be de-
scribed completely by listing its weights and biases. There
are a fixed number of weights and biases, and so an RNN
with a given topology may be treated as a vector in RC
where C = C(c) is the number of weights and biases. Neu-
roannealing utilizes a Gaussian measure to allow unbounded
weights with a preference for small weights. For a given `,
s, and c, the measure over RNNs matching this profile is

λ`,s,c(A) =

∫
A

exp

(
− x2

2γ2

)
dx (4)

where A is a measurable set in RC . The factor γ is termed
the space scale; it reflects the average absolute correlation
between connected nodes. The default space scale is γ = 1.

Next, networks with the same number of layers and layer
sizes but different connectivity are handled. The connectiv-
ity pattern c can be represented as a binary string of size
L = N2 where N is the total number of nodes in the net-
work, N =

∑
i si. L is the number of possible links. Let

n(c) =
∑
i ci be the number of actual links in c. Given `

and s, there are exactly 2L distinct connectivity patterns.
Let P be the set of such patterns. A set A of RNN repre-
sentations with different connectivity patterns may be par-
titioned into a finite family of sets {Ac}c∈P , separating out
RNNs by connectivity. A measure over such sets is given by

λ`,s(A) =
∑
c∈P

1

n(c)

(
L
n(c)

)
λ`,s,c(Ac). (5)

Here the factor 1/n(c) is applied to prefer networks with
lower connectivity, and hence fewer parameters. The com-
binatorial factor is added to emphasize networks that have
about half of the possible number of links. The combined
effect of the two parameters prefers smaller networks that
possess a reasonable number of links.

If only the number of layers is fixed, the number of sizes s
is a vector of positive integers greater than one with dimen-
sion `. Networks with smaller layer sizes are preferable, but
layers of size one should not be emphasized too strongly, or
else neuroannealing will not consider larger layer sizes. This
balance was accomplished by weighting each size profile in-
versely to the total number of nodes in the network. There
are countably many possible layer sizes, and these can be
enumerated. Let S be the set of size profiles, and define

λ`(A) =
∑
s∈S

1∑
i si

λ`,s(As), (6)

where As, like Ac in the last paragraph, decomposes A ac-
cording to size profiles. It is notable that λ` is not finite,
unlike λ`,s and λ`,s,w. First, there are many size profiles
with equivalent sums, and second

∑
1/k =∞ even if there

were not. The theory of evolutionary annealing only applies
to finite measures. A finite measure over size profiles can be
obtained by capping the total size of the network with some
large value. In practice, the experiments in this paper never
produced a network larger than 256 nodes, and so this value
was used as a maximum network size.

The base measure over RNNs is achieved by handling ar-
bitrary numbers of layers. This number is an integer greater
than one. As with sizes, a set of RNNs may be decomposed
according to the number of layers, so that for a given set of
RNNs A, the set A` is the subset of A with ` layers. Then
a measure over arbitrary layered RNNs is given by

λ(A) =

∞∑
`=2

1

`
λ`(A`). (7)

Once again, this measure is not finite, but a finite measure
can be obtained by bounding the size of the network at some
large value. In the experiments that follow, the number of
layers was bounded above by 256; more than 20 layers were
rarely observed.

The next section describes how this measure can be used
to partition the space.

Algorithm 1 Algorithm to Generate a Partition Of RNNs

{xm}Mm=1 ⊆ X, the observed networks as (`, s, c, w) tuples

T ← {X}, the partition tree
k(i)← ∅ for all i = 1, . . . ,M , node assignment function
µ({X})← (0, 0, 0, 0), the node marking function
idx({X}) = 4, the node separation index function
for m← 1 to M do
N ← highest node in T s.t. xm ∈ N and ∃i ≤
idx(N) s.t. µ(N)i 6= xm,i
if ∃j 6= m s.t. k(j) = N then
N0, N1 ← separate (xj , xm, N)
T ← T ∪ {N0, N1}
k(j)← N0, k(m)← N1

µ(N0)← µ(N), µ(N1)← xm
idx(N0)← idx(N), idx(N1)← 4
idx(N)← the minimum i s.t. xm,i 6= µ(N0)i

else
k(m)← N
µ(N) = xm
idx(N)← 4

end if
end for

3.3 Partitioning Networks
Evolutionary annealing works by partitioning the search

space at increasingly fine resolution one point at a time.
There are many ways in which such partitioning could be
done. Neuroannealing uses the four levels in described in
the last section in order to partition sets of neural networks.
For this purpose, the partition tree is conceptually stratified
into four sections, one for each of the four levels used to
define the base measure in Section 3.2.

The stratification can be best understood by starting with
the node-separation algorithm used to divide an existing
partition region between two networks. Given two networks
x1 and x2 and a set A, neuroannealing must create disjoint
sets A1 and A2 such that x1 ∈ A1 and x2 ∈ A2. The net-
works can be decomposed so that xi = (`i, si, ci, wi) for

i = 1, 2. If `1 6= `2, then compute the midpoint ˜̀= d `1+`2
2
e,

and let A1 be the set of networks in A with less than ˜̀ lay-
ers, and let A2 = A \ A1. If `1 = `2 but s1 6= s2, then a
vector separation method like that in [4, 5] can be applied to
the size vectors s1 and s2. The same approach can also be
applied if c1 6= c2, and finally if w1 6= w2. This approach to
separation assumes a hierarchy of separation levels, so that
` is separated first, then s, then c, and finally w.

Provided that any traversal through the partition tree
from the root respects the ordering of this hierarchy, the
tree will correspond to a valid partition. If the ordering is
violated, for example, by separating on w at a higher node
in the tree, by ` at a lower level, and then by w at the the
leaf, then the regions contained in distinct branches of the
tree may overlap, with deleterious results. Thus a traversal
through the tree must be stratified. Any separation on `
must occur first, then separation on s, and so on.

Algorithm 1 implements this stratification. The network
partitioning algorithm for neuroannealing locates the first
separating boundary for the new network. If this node is
a leaf, then the algorithm separates the points using the
vector separation algorithm in [4], which basically divides

the region along the midpoint in the axis of largest difference
between the two networks for the current stratum. But if
this boundary occurs at an internal node of the partition
tree, then a new internal node must be created, and the point
being inserted must be separated from every node under the
span of the boundary node. In order to make this approach
possible, each node in the partition tree must be marked
with the representation (`, s, c, w) that was used to create
the node and the index of the tuple that was most recently
used to separate the node. Note that the portion of this
representation that creates the boundary is shared among all
points under the space of the boundary node. For example,
if the boundary occurs at s, so that s′ 6= s where s′ is the size
profile of the network being inserted, then it holds that every
node underneath the boundary shares the size profile s. By
separating s′ from s using the vector separation algorithm,
the inserted network is partitioned away from every node
under the internal boundary node.

The basic partitioning algorithm in Section 2 described a
partition tree that represents the entire area of the search
space. In contrast, the hierarchical partitioning method only
represents the area of the network topologies discovered at
each point during execution. When neuroannealing is ini-
tialized, the area of the first topology inserted into the tree
is used to compute the area of the whole tree for sampling
purposes. Thus if the first point is x1 = (`1, s1, c1, w1), the
partition tree is assigned the initial area λ`1,s1,c1(X`1,s1,c1).
Whenever a point with a distinct topology is encountered,
say, x2 = (`2, s2, c2, w2), the new node for this topology is
assigned the area λ`2,s2,c2(X`2,s2,c2). Thus the total area of
the partition tree is increased whenever a new topology is in-
serted. This increase is ignored for the purpose of sampling,
as though the area of the new topology had previously been
uniformly distributed among the existing leaf nodes. Since
sampling from the tree is normalized, this effect is invisible.

The approach of adding new area as topologies are discov-
ered avoids an otherwise troublesome problem of reallocat-
ing area from existing nodes in the trees. As a result, when
a new topology appears, it immediately acquires substan-
tial area, forcing some exploration of the new topology due
to the factor λ(Ean) in Equation 1. This effect parallels the
use of speciation in NEAT, but is a natural mathematical
property of the hierarchical partitioning method.

3.4 Network Mutations
Once neuroannealing has selected a network to mutate out

of the partition tree, a sequence of NEAT-like mutations is
applied to modify the network, possibly changing its topol-
ogy. Eight types of mutation are employed, in the following
order: (1) uniform crossover, (2) addition of a hidden layer,
(3) removal of a hidden layer, (4) addition of a node to a
hidden layer, (5) removal of a node from a hidden layer, (6)
addition of a link between any two unconnected layers, (7)
removal of an existing link, and (8) mutation of the weights
with an area-sensitive Gaussian.

Neuroannealing selects a second point and applies crossover
with probability 0.5. Crossover combines two networks to
form a third network that shares properties of the two par-
ents; this operation is useful for neural networks because
networks are naturally modular. When crossover is used in
neuroannealing, a second network is selected independently
of the first using annealed tournament selection. The struc-
ture of the networks is aligned according to the indices of

their layers, then the weights from any shared links are re-
combined using either uniform crossover (randomly selec-
tion from either parent) with probability 0.6 or intermedi-
ate crossover (averaging) with probability 0.4. The com-
bined network retains the topology of the first parent, but
integrates weights and biases from the second parent where
they share structure.

After crossover, further mutations are performed with some
probability in the order presented above. Only one such
mutation is allowed. Once a layer, node, or link has been
added or removed, no further structural changes are per-
mitted. The probability for adding or removing a layer and
for adding or removing a node is 0.01. The probability of
adding or removing a link is 0.025.

When adding layers, neuroannealing uses a chained layer
of hidden nodes that copies an existing layer of the network
and adds two links. The first link runs from the copied
layer to the chain layer with the identity matrix as the link
weight matrix. The second link connects to a random layer
in the network other than the chain layer, including possibly
the copied layer. If the copied layer was already connected
to the target layer, then the weights are also copied from
the existing to the new link. Otherwise, the new weights
are sampled from a Gaussian with variance σ̂2, defaulting
to σ̂ = 0.1. A chain layer preserves the prior state of the
copied layer into the next step. Successive chain layers can
quickly add a short-term memory to the RNN that would
otherwise be difficult to attain randomly.

When adding or removing links, any layer is chosen as the
source, and any non-input layer as the target. If the link
already exists, no new link is added. Or, if the link does
not exist, no links are removed. This feature is intended
to prefer networks with a medium number of links, and to
prevent the removal of links in a sparse network.

If no structural mutations are performed, each existing
weight of the network is randomly modified with probabil-
ity 0.5 using a Gaussian that reflects the structure of the
current partition of the space. The partition tree is tra-
versed to obtain the current upper and lower boundaries on
the weights of the potentially recombined network, u and `,
respectively. These boundaries are used to determine dis-
tinct variances for each weight or bias. Because the weight
space is unbounded, these vectors may be infinite on either
side. Therefore, u and ` are modified by using the cumula-
tive distribution of the Gaussian,

Φγ(z) =
1√
2πγ

∫ z

−∞
exp

(
− x2

2γ2

)
dz, (8)

reflecting the warping of the weight space that is also applied
by the base measure of Section 3.2. The standard deviation
for mutating each weight or bias is then given by

σn,i =
Φγ(ui)− Φγ(`i)

2 logn
, (9)

where n is the number of the generation and i is the in-
dex of the component within the weight and bias vector as
used for partitioning in Section 3.3. Each weight or bias
is mutated independently. Scaling the variance in this way
preserves well-explored parameters, for which the distance
between the upper and lower boundaries is small, while forc-
ing exploration of parameters that have not been partitioned
much. The extra logarithmic factor is used to compel faster
convergence in higher dimensional spaces.

3.5 Neuroannealing Instantiation
With the previous subsections in mind, the complete neu-

roannealing algorithm can be stated. Neuroannealing is evo-
lutionary annealing in the space of layered RNNs with an-
nealed tournament selection using the base measure from
Section 3.2 and the hierarchical partitioning algorithm of
Section 3.3. Selected networks are mutated using the chain
of mutations described in Section 3.4. The hidden and out-
put layers of the RNNs use hyperbolic tangent activations.

All networks in the initial population have the same topol-
ogy, which consists of a single input layer and a single out-
put layer, with the input layer fully connected to the output
layer. Within this topology, the initial weights and biases
are chosen uniformly at random inside [−σ̂, σ̂] where σ̂ is the
variance to be used when adding layers, nodes, and links. At
initialization, the weights are intended to be small so that
the activation can quickly change with new mutations, pro-
moting fast exploration of the space.

Neuroannealing has four parameters that must be config-
ured: (1) the population size K, (2) the learning rate η, (3)
the space scale γ, and (4) the standard deviation, σ̂. Based
on preliminary experiments, a reasonable set of defaults is
K = 50, η = 0.1, γ = 1.0, and σ̂ = 0.1. The defaults work
well for all of the experiments below except for non-Markov
double pole-balancing, where the values K = 50, η = 0.025,
γ = 2.5 and σ̂ = 0.25 were used instead.

4. NEUROANNEALING EXPERIMENTS
Experiments were performed in three domains. The first

domain is double pole-balancing, a standard benchmark task
that is not fractured, and on which NEAT thus performs
well. The next two domains, multiplexers and concentric
spirals, have fractured state spaces on which NEAT does
not perform well, and for which we hypothesize that neu-
roannealing will outperform NEAT.

4.1 Experimental Setup
For the experiments in this section, except as noted oth-

erwise, both neuroannealing and NEAT were run for 1, 000
generations with a population size of 50, totaling 50, 000
evaluations. Each experiment was run 200 times for each
method. The parameters for NEAT were set according to
the defaults distributed with the publicly available C++
package, except for non-Markov double-pole balancing, where
they were set to match [7]. Each task is now described in
turn along with its experimental results.

4.2 Double Pole-Balancing
The double pole-balancing task is a control problem in

which two poles are attached to a moving cart with hinges
placed on a fixed length track. A successful controller must
remain on the track and keep both poles within the tolerance
for 100, 000 steps, or about half an hour of real time. Further
details of the simulation can be found in the literature [7,
2].

The neural network is tasked with controlling the direc-
tion and magnitude of a force applied to the cart. Six state
variables are available: the position and velocity of the cart,
the angle and angular velocity of the first pole, and the angle
and angular velocity of the second pole. In the Markov ver-
sion of the task, all six variables are provided to the network,
and the network output is scaled to [−10, 10] and applied as
the force; this problem can be solved without any hidden

Table 1: Published results for selected methods on
both versions of the Double Pole-Balancing task, as
given by Gomez et al [2]. Reported quantity is the
average number of evaluations before success, with
failed trials excluded. Results for neuroannealing
are new (as indicated by the asterisks), as well as
the results for NEAT (determined experimentally
using the parameters published by Stanley [7]).

Method Markov non-Markov
SANE 12,600 262,700
Q-MLP 10,582 –
Neuroannealing *7,767 *7,499
ESP 3,800 7,374
NEAT *1,819 *4,676
CMA-ES 895 3,521
CoSyNE 954 1,249

nodes. A non-Markov version of the task provides only the
position and angles to the network, requiring the network to
infer the velocities over time. This second task is more diffi-
cult, but can be solved with as few as two hidden nodes [7].

The fitness value of a network for double pole-balancing
with or without velocities is the number of steps for which
the cart remains on the track with the poles upright. The
non-Markov task is more challenging and has so far only
been solved through neuroevolution. The number of net-
work evaluations required to solve the problem is available
for several methods and is compared with the results for
neuroannealing in Table 1.

Neuroannealing solved the double pole-balancing task in
84.5% of all trials for the Markov version, requiring on aver-
age 7, 767±4, 871 time steps to reach the solution on average.
On the non-Markov version, neuroannealing solved the task
in 96% of trials in 7, 499±3, 157 time steps on average. The
averages here are taken over successful trials only. In com-
parison, NEAT solved both tasks on every trial, requiring
1, 819 ± 2, 276 steps in the Markov case and 4, 676 ± 2, 107
steps in the non-Markov case. The solutions to the double
pole-balancing problem found by neuroannealing used few
hidden nodes and did not show any evidence of bloat. It is
interesting and important to note that neuroannealing per-
forms better on the more complex version of the problem,
justifying the claim that neuroannealing is better suited than
NEAT to problems that require more complex networks.

Both neuroannealing and NEAT can solve the double pole-
balancing task effectively. Neuroannealing pays a perfor-
mance penalty for its more exhaustive search in this domain.
However, in more fractured domains such a search pays off,
as is seen in the non-Markov version of the problem.

4.3 Multiplexers
A multiplexer is a circuit that selects one of several input

lines using a binary address. Multiplexers are used to imple-
ment computer memory circuits and are easily implemented
in hardware. The function of a multiplexer is difficult for
a network to learn because it requires the use of a large
percentage of the binary input space. A single perceptron
can only distinguish a fraction of the binary numbers, and
thus multiple neurons must be used in concert to solve the

Table 2: Results of neural network experiments on
the multiplexer problem. Columns show the prob-
ability of success (σNε), the average time to success

(ψ̂Nε), and the average final percent misclassified (%).
A trial is considered successful if the algorithm in-
correctly maps at most 1%, 20%, 25%, and 30% of
the possible inputs respectively on Mux12, Mux24,
Mux35, and Mux36. Neuroannealing outperforms
NEAT on the multiplexer problems in all categories;
these results are statistically significant (p < 0.01).

Neuroannealing

Task σNε ψ̂Nε %
Mux12 0.130 15,376 ± 15,930 10.8 ± 4.2
Mux24 0.047 19,833 ± 10,351 24.7 ± 3.7
Mux35 0.028 20,566 ± 15,509 28.5 ± 1.3
Mux36 0.036 17,675 ± 12,449 30.5 ± 1.3

NEAT

Task σNε ψ̂Nε %
Mux12 0.000 ∞ 16.6 ± 2.7
Mux25 0.000 ∞ 27.9 ± 0.1
Mux35 0.000 ∞ 32.2 ± 0.1
Mux36 0.000 ∞ 34.8 ± 0.3

multiplexer problem. As a result, methods like NEAT have
difficulty discovering the required complexity [3].

The experiments below test the ability of neuroannealing
to learn multiplexers with four different inputs. Mux12 has
one address line and four binary inputs. Mux24 uses two ad-
dress lines and four binary inputs. Mux35 has three address
lines and five binary inputs, while Mux36 has three address
lines and six inputs. The versions with three address lines
use less than the possible eight data inputs in order to sim-
plify the task for neural networks. The task in each case is
to learn a network that reads the binary address lines and
outputs the binary input at the specified address line. The
data inputs are numbered in the standard binary order.

The fitness function sums the error at each feasible ad-
dress and data input. The network outputs are scaled to
[0, 1] for this purpose. The results in Table 2 show that neu-
roannealing performs better than NEAT on the multiplexer
problems. On 13% of all runs, neuroannealing completely
solves Mux12, whereas NEAT was unable to find a solution
after 200 runs. The best solution discovered by neuroan-
nealing for Mux24 was also completely correct, although the
average solution achieved a fitness of 0.75 against an average
of 0.72 for NEAT. On the versions of the problem with three
address lines, Mux35 and Mux36, neuroannealing similarly
performed well, with an average fitness of 0.72 and 0.70,
compared to 0.68 and 0.65 for NEAT. The best fitness in
200 trials for neuroannealing on Mux35 was 0.97, and on
Mux36 it was 0.92. The best networks on this task were
indeed large. Typical solutions for neuroannealing used 4-6
layers with about 20 nodes. Thus neuroannealing solves the
multiplexer problems better than NEAT because it discov-
ers complex networks with high objective values that NEAT
cannot reach. The next task, learning concentric spirals,
reinforces this point.

4.4 Concentric Spirals
In the Concentric Spirals problem, originally introduced

by Minsky and Papert, the state space is divided into two in-
terlocking spirals, one“black”and the other“white”, and the
task is to label each point in the state space accordingly [6,
3]. The spate space is divided between the two spirals, and
the resulting state space is shown in Figure 1(a). An evenly
spaced 100 × 100 grid was overlaid on the state space over
the region [−6.5, 6.5]2, and the resulting 10, 000 points were
used to test the networks.

The neural network for this problem has two inputs and
one output. The Cartesian coordinates of the state space are
passed to the network as input, and the single output should
read 1.0 for black, and 0.0 for white. For this experiment,
the objective function summed the errors at each output for
every point on the 100 × 100 grid, scaled between 0.0 and
1.0. Thus the sigmoidal outputs of NEAT were used directly,
and the hyperbolic tangent outputs of neuroannealing were
shifted and scaled as required. It is possible to score a fit-
ness of 0.67 on this problem by learning a correctly angled
hyperplane on the state space. To achieve higher scores, the
network must learn the spiral structure. Concentric spirals
tests the ability of a network to distinguish nearby points
in the state space that should be classified differently. In
Kohl’s terms, the state space is fractured. Such a task re-
quires networks with many nodes to represent the space.

As expected, NEAT performed poorly, rarely exceeding
the basic hyperplane solution with fitness 0.67. By contrast,
neuroannealing outperformed the hyperplane approximation
on about half of the runs, correctly classifying 69% of the
points on the average. Complete results are in Table 3.

Figure 1 shows the learned classifications from several runs
of neuroannealing. Over time, neuroannealing eventually
discovers solutions that correspond to a spiral shape on the
state space. Such solutions generally correspond to larger
networks. Networks in the figure generally consisted of 4−7
layers: The largest network, with 77 nodes, had a chained
layer of size 37 that allowed correct classification of 30 extra
points more than the network without the chained layer. As
the networks become larger, they are better able to model
the concentric spirals, but the learning progress slows down
because larger networks have higher dimension. In general,
the evidence supports the claim that neuroannealing is more
capable of discovering complex solutions in this fractured do-
main in part because annealed selection follows suboptimal
intermediate steps to arrive at more complex optima.

5. DISCUSSION AND FUTURE WORK
The experiments show that neuroannealing is an effective

method for training neural networks in three domains: dou-
ble pole-balancing, multiplexers, concentric spirals. Neu-
roannealing works well on these problems because it searches
more thoroughly through complex networks and is not con-
strained by population size. Annealed selection enables neu-
roannealing to attempt more ways of increasing network
complexity without forgetting previous solutions. Thus neu-
roannealing can step through regions of suboptimal fitness in
order to find successful complex networks. When simple so-
lutions exist, neuroannealing finds them. When complexity
is required, however, neuroannealing considers progressively
more complex solutions.

In double pole-balancing, neuroannealing does not find so-

(a) Goal State (b) f = .7389, 37 nodes (c) f = .7494, 30 nodes (d) f = .7511, 40 nodes

Figure 1: State space classification for the concentric spirals problem as learned by neuroannealing. Panel
(a) shows the target classification on a 100 × 100 grid. Panels (b)-(d) show the best classifiers learned by
neuroannealing in three different trials. Because the state space is fractured, more accurate solutions require
larger networks. Neuroannealing is able to discover these solutions, whereas NEAT does not.

Table 3: Results of neural network experiments on
the concentric spirals problem. The table shows the
success probability (σNε), the average time to suc-

cess (ψ̂Nε), and percent of points incorrectly classi-
fied (%). Success for concentric spirals is defined
as correctly classifying 70% of the points in the do-
main. A hyperplane is sufficient to categorize 67%
of the points, and this is the solution found by
NEAT in almost every case. Neuroannealing is able
to do better, outperforming NEAT substantially in
all categories; this result is statistically significant
(p < 0.01).

Concentric Spirals

Method σNε ψ̂Nε %
Neuroannealing 0.261 21,687 ± 7,834 31.0 ± 2.1
NEAT 0.000 ∞ 33.1 ± 0.0

lutions as quickly as NEAT, ESP, or CoSyNE, but it does
solve the problem. This success is achieved despite the fact
that neuroannealing is designed to focus on thorough op-
timization rather than speed. Neuroannealing is a robust
optimizer even in domains where NEAT performs well.

On the multiplexer problems and on concentric spirals,
neuroannealing performs substantially better than NEAT,
supporting the claim that neuroannealing is more capable
of learning the fractured state space encoded in these prob-
lems. The size of the networks learned by neuroannealing
can exceed those of NEAT by a full order of magnitude, as
demonstrated by networks with up to 77 nodes in Figure 1.
As noted by Kohl [3], these problems require complexity in
order to be solved, and neuroannealing is able to deliver.

One qualification to these results is that the mutators and
structure of neuroannealing have many features that are not
shared in common with NEAT; the gains for neuroanneal-
ing may be due to the layered structure or the chain layer
mutation, and not due to annealed selection. While this
possibility cannot be ruled out at present, it is nonetheless
clear that neuroannealing as a whole performs quite well.

Future research into neuroannealing could focus on de-
termining the effect of the various mutation operators and
tuning their parameters. In addition, the good use of chain

layers suggest that there may be other large-scale agglom-
erative combination methods for constructing large neural
networks from known modular components.

6. CONCLUSION
Neuroannealing is a method designed to work on fractured

problems where more traditional neuroevolution methods
fail. It is based on a martingale optimization, which makes
it possible to construct more complex networks than be-
fore. Neuroannealing was shown to be an effective optimizer
in diverse domains, including pole-balancing, multiplexers,
and concentric spirals. In fractured domains, neuroanneal-
ing solidly outperforms NEAT due to its ability to discover
larger networks with higher objective values. These results
demonstrate that neuroannealing is an effective method for
optimizing neural networks in challenging domains.

7. REFERENCES
[1] F. Gomez and R. Miikkulainen. Incremental evolution

of complex general behavior. Adaptive Behavior, 5,
1997.

[2] F. Gomez, J. Schmidhuber, and R. Miikkulainen.
Accelerated neural evolution through cooperatively
coevolved synapses. Journal of Machine Learning
Research (JMLR), 9, 2008.

[3] N. Kohl. Learning in Fractured Problems for
Constructive Neural Network Algorithms. PhD thesis,
University of Texas at Austin, 2009.

[4] A. Lockett and R. Miikkulainen. Real-space
evolutionary annealing. In Proceedings of the 2011
Genetic and Evolutionary Computation Conference
(GECCO-2011), 2011.

[5] A. Lockett and R. Miikkulainen. Evolutionary
annealing: Global optimization in arbitrary measure
spaces. Journal of Global Optimization, 2013.

[6] M. A. Potter and K. A. D. Jong. Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1), 2000.

[7] K. O. Stanley. Efficient Evolution of Neural Networks
through Complexification. PhD thesis, University of
Texas at Austin, 2004.

[8] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2), 2002.

