
 

 Evolving Deep Neural Networks  

Risto Miikkulainen
1,2

, Jason Liang
1,2

, Elliot Meyerson
1,2

, Aditya Rawal
1,2

, Dan Fink
1 
, Olivier 

Francon
1
, Bala Raju

1
, Hormoz Shahrzad

1
, Arshak Navruzyan

1
, Nigel Duffy

1
, Babak Hodjat

1
 

1
Sentient Technologies, Inc.  

2
The University of Texas at Austin  

March 4, 2018  

Abstract  

The success of deep learning depends on finding an architecture to fit the task. As deep learning has scaled up 
to more challenging tasks, the architectures have become difficult to design by hand. This paper proposes an 
automated method, CoDeepNEAT, for optimizing deep learning architectures through evolution. By extending 
existing neuroevolution methods to topology, components, and hyperparameters, this method achieves results 
comparable to best human designs in standard benchmarks in object recognition and language modeling. It 
also supports building a real-world application of automated image captioning on a magazine website. Given 
the anticipated increases in available computing power, evolution of deep networks is promising approach to 
constructing deep learning applications in the future.  

1 Introduction  

Large databases (i.e. Big Data) and large amounts of computing power have become readily available since 
the 2000s. As a result, it has become possible to scale up machine learning systems. Interestingly, not only 
have these systems been successful in such scaleup, but they have become more powerful. Some ideas that did 
not quite work before, now do, with million times more compute and data. For instance, deep learning neural 
networks (DNNs), i.e. convolutional neural networks (LeCun et al. 1998) and recurrent neural networks (in 
particular long short-term memory, or LSTM (Hochreiter and Schmidhuber 1997)), which have existed since 
the 1990s, have improved state-of-the-art significantly in computer vision, speech, language processing, and 
many other areas (Collobert and Weston 2008; Graves et al. 2013; Szegedy et al. 2016b).  

As DNNs have been scaled up and improved, they have become much more complex. A new challenge 
has therefore emerged: How to configure such systems? Human engineers can optimize a handful of 
configuration parameters through experimentation, but DNNs have complex topologies and hundreds of 
hyperparameters. Moreover, such design choices matter; often success depends on finding the right architecture 
for the problem. Much of the recent work in deep learning has indeed focused on proposing different hand-
designed architectures on new problems (Che et al. 2016; He et al. 2016; Ng et al. 2015; Szegedy et al. 2016b).  

The complexity challenge is not unique to neural networks. Software and many other engineered systems 
have become too complex for humans to optimize fully. As a result, a new way of thinking about such design 
has started to emerge. In this approach, humans are responsible for the high-level design, and the details are 
left for computational optimization systems to figure out. For instance, humans write the overall design of a 
software system, and the parameters and low-level code is optimized automatically (Hoos 2012); humans write 
imperfect versions of programs, and evolutionary algorithms are then used to repair them (Goues et al. 2012); 
humans define the space of possible web designs, and evolution is used to find effective ones (Miikkulainen 
and Iscoe 2017).  

This same approach can be applied to the design of DNN architectures. This problem includes three 
challenges: how to design the components of the architecture, how to put them together into a full network 
topology, and how to set the hyperparameters for the components and the global design. These three aspects 
need to be optimized separately for each new task.  

This paper develops an approach for automatic design of DNNs. It is based on the existing neuroevolution 
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technique of NEAT (Stanley and Miikkulainen 2002), which has been successful in evolving topologies and 
weights of relatively small recurrent networks in the past. In this paper, NEAT is extended to the coevo-
lutionary optimization of components, topologies, and hyperparameters. The fitness of the evolved networks 
is determined based on how well they can be trained, through gradient descent, to perform in the task. The 
approach is demonstrated in the standard benchmark tasks of object recognition and language modeling, and 
in a real-world application of captioning images on a magazine website.  

The results show that the approach discovers designs that are comparable to the state of the art, and does 
it automatically without much development effort. The approach is computationally extremely demanding— 
with more computational power, it is likely to be more effective and possibly surpass human design. Such 
power is now becoming available in various forms of cloud computing and grid computing, thereby making 
evolutionary optimization of neural networks a promising approach for the future.  

2 Background and Related Work  

Neuroevolution techniques have been applied successfully to sequential decision tasks for three decades 
(Floreano et al. 2008; Lehman and Miikkulainen 2013; Montana and Davis 1989; Yao 1999). In such tasks 
there is no gradient available, so instead of gradient descent, evolution is used to optimize the weights of the 
neural network. Neuroevolution is a good approach in particular to POMDP (partially observable Markov 
decision process) problems because of recurrency: It is possible to evolve recurrent connections to allow 
disambiguating hidden states.  

The weights can be optimized using various evolutionary techniques. Genetic algorithms are a natural 
choice because crossover is a good match with neural networks: they recombine parts of existing neural 
networks to find better ones. CMA-ES (Igel 2003), a technique for continuous optimization, works well on 
optimizing the weights as well because it can capture interactions between them. Other approaches such as 
SANE, ESP, and CoSyNE evolve partial neural networks and combine them into fully functional networks 
(Gomez and Miikkulainen 1997; Gomez et al. 2008; Moriarty and Miikkulainen 1997). Further, techniques 
such as Cellular Encoding (Gruau and Whitley 1993) and NEAT (Stanley and Miikkulainen 2002) have been 
developed to evolve the topology of the neural network, which is particularly effective in determining the 
required recurrence. Neuroevolution techniques have been shown to work well in many tasks in control, 
robotics, constructing intelligent agents for games, and artificial life (Lehman and Miikkulainen 2013). 
However, because of the large number of weights to be optimized, they are generally limited to relatively small 
networks.  

Evolution has been combined with gradient-descent based learning in several ways, making it possible to 
utilize much larger networks. These methods are still usually applied to sequential decision tasks, but gradients 
from a related task (such as prediction of the next sensory inputs) are used to help search. Much of the work is 
based on utilizing the Baldwin effect, where learning only affects the selection (Hinton and Nowlan 1987). 
Computationally, it is possible to utilize Lamarckian evolution as well, i.e. encode the learned weight changes 
back into the genome (Gruau and Whitley 1993). However, care must be taken to maintain diversity so that 
evolution can continue to innovate when all individuals are learning similar behavior.  



Evolution of DNNs departs from this prior work in that it is applied to supervised domains where gradients 
are available, and evolution is used only to optimize the design of the neural network. Deep neuroevolution is 
thus more closely related to bilevel (or multilevel) optimization techniques (Sinha et al. 2014). The idea is to 
use an evolutionary optimization process at a high level to optimize the parameters of a low-level evolutionary 
optimization process.  

Consider for instance the problem of controlling a helicopter through aileron, elevator, rudder, and rotor 
inputs. This is a challenging benchmark from the 2000s for which various reinforcement learning approaches 
have been developed (Abbeel et al. 2007; Bagnell and Schneider 2001; Ng et al. 2004). One of the most 
successful ones is single-level neuroevolution, where the helicopter is controlled by a neural network that is 
evolved through genetic algorithms (Koppejan and Whiteson 2011). The eight parameters of the 
neuroevolution method (such mutation and crossover rate, probability, and amount and population and elite 
size) are optimized by hand. It would be difficult to include more parameters because the parameters interact 
nonlinearly. A large part of the parameter space thus remains unexplored in the single-level neuroevolution 
approach. However, a bilevel approach, where a high-level evolutionary process is employed to optimize these 
parameters, can search this space more effectively (Liang and Miikkulainen 2015). With bilevel evolution, the 
number of parameters optimized could be extended to 15, which resulted in significantly better performance. 
In this manner, evolution was harnessed in this example task to optimize a system design that was too complex 
to be optimized by hand.  

Very recently, a studies have started to emerge with the goal of optimizing DNNs. Due to limited 
computational resources, they have focused on specific parts of the design. For instance, Loshchilov et al. 
(2016) used CMA-ES to optimize the hyperparameters of existing DNNs obtaining state-of-the-art results on  
e.g. object recognition. Further, Fernando et al. (2016) evolved a CPPN (compositional pattern-producing 
network (Stanley 2007)) to output the weights of an auto-encoder neural network. The autoencoder was then 
trained further through gradient descent, forming gradients for the CPPN training, and its trained weights were 
then incorporated back into the CPPN genome through Lamarckian adaptation. A related approach was 
proposed by Zoph and Le (2016): the topology and hyperparameters of a deep network and LSTM network 
were modified through policy iteration.  

Building on this foundation, a systematic approach to evolving DNNs is developed in this paper. First, the 
standard NEAT neuroevolution method is applied to the topology and hyperparameters of convolutional neural 
networks, and then extended to evolution of components as well, achieving results comparable to state of the 
art in the CIFAR-10 image classification benchmark. Second, a similar method is used to evolve the structure 
of LSTM networks in language modeling, showing that even small innovations in the components can have a 
significant effect on performance. Third, the approach is used to build a real-world application on captioning 
images in the website for an online magazine.  

3 Evolution of Deep Learning Architectures  

NEAT neuroevolution method (Stanley and Miikkulainen 2002) is first extended to evolving network topology 
and hyperparameters of deep neural networks in DeepNEAT, and then further to coevolution of modules and 
blueprints for combining them in CoDeepNEAT. The approach is tested in the standard CIFAR-10 benchmark 
of object recognition, and found to be comparable to the state of the art.  



3.1 Extending NEAT to Deep Networks  

DeepNEAT is a most immediate extension of the standard neural network topology-evolution method NEAT 
to DNN. It follows the same fundamental process as NEAT: First, a population of chromosomes (each 
represented by a graph) with minimal complexity is created. Over generations, structure (i.e. nodes and edges) 
is added to the graph incrementally through mutation. During crossover, historical markings are used to 
determine how genes of two chromosomes can be lined up. The population is divided into species (i.e. 
subpopulations) based on a similarity metric. Each species grows proportionally to its fitness and evolution 
occurs separately in each species.  

DeepNEAT differs from NEAT in that each node in the chromosome no longer represents a neuron, but a 
layer in a DNN. Each node contains a table of real and binary valued hyperparameters that are mutated through 
uniform Gaussian distribution and random bit-flipping, respectively. These hyperparameters determine the 
type of layer (such as convolutional, fully connected, or recurrent) and the properties of that layer (such as 
number of neurons, kernel size, and activation function). The edges in the chromosome are no longer marked 
with weights; instead they simply indicate how the nodes (layers) are connected together. To construct a DNN 
from a DeepNEAT chromosome, one simply needs to traverse the chromosome graph, replacing each node 
with the corresponding layer. The chromosome also contains a set of global hyperparameters applicable to the 
entire network (such as learning rate, training algorithm, and data preprocessing).  

When arbitrary connectivity is allowed between layers, additional complexity is required. If the current 
layer has multiple parent layers, a merge layer must be applied to the parents in order to ensure that the parent 
layer’s output is the same size as the current layer’s input. Typically, this adjustment is done through a 
concatenation or element-wise sum operation. If the parent layers have mismatched output sizes, all of the 
parent layers must be downsampled to parent layer with the smallest output size. The specific method for 
downsampling is domain dependent. For example, in image classification, a max-pooling layer is inserted after 
specific parent layers; in image captioning, a fully connected bottleneck layer will serve this function.  

During fitness evaluation, each chromosome is converted into a DNN. These DNNs are then trained for a 
fixed number of epochs. After training, a metric that indicates the network’s performance is returned back to 
DeepNEAT and assigned as fitness to the corresponding chromosome in the population.  

While DeepNEAT can be used to evolve DNNs, the resulting structures are often complex and unprinci-
pled. They contrast with typical DNN architectures that utilize repetition of basic components. DeepNEAT is 
therefore extend to evolution of modules and blueprints next.  

3.2 Cooperative Coevolution of Modules and Blueprints  

Many of the most successful DNNs, such as GoogLeNet and ResNet are composed of modules that are repeated 
multiple times (He et al. 2016; Szegedy et al. 2016b). These modules often themselves have complicated 
structure with branching and merging of various layers. Inspired by this observation, a variant of DeepNEAT, 
called Coevolution DeepNEAT (CoDeepNEAT), is proposed. The algorithm behind CoDeep-NEAT is 
inspired mainly by Hierarchical SANE (Moriarty and Miikkulainen 1997) but is also influenced by component-
evolution approaches ESP (Gomez and Miikkulainen 1999) and CoSyNE (Gomez et al. 2008).  

In CoDeepNEAT, two populations of modules and blueprints are evolved separately, using the same 
methods as described above for DeepNEAT. The blueprint chromosome is a graph where each node contains 
a pointer to a particular module species. In turn, each module chromosome is a graph that represents a small 
Figure 1: A visualization of how CoDeepNEAT assembles networks for fitness evaluation. Modules and 
blueprints are assembled together into a network through replacement of blueprint nodes with corresponding 
modules. This approach allows evolving repetitive and deep structures seen in many successful recent DNNs.  



Figure 1: A visualization of how CoDeepNEAT assembles networks for fitness evaluation. Modules and 
blueprints are assembled together into a network through replacement of blueprint nodes with corresponding 
modules. This approach allows evolving repetitive and deep structures seen in many successful recent DNNs. 
	
	
DNN. Both graphs and the nodes in them are evolved. During fitness evaluation, the modules and blueprints 
are combined to create a larger assembled network Figure 1. Each node in the blueprint is replaced with a 
module chosen randomly from the species to which that node points. If multiple blueprint nodes point to the 
same module species, then the same module is used in all of them. The assembled networks are evaluated the 
a manner similar to DeepNEAT, but the fitnesses of the assembled networks are attributed back to blueprints 
and modules as the average fitness of all the assembled networks containing that blueprint or module.  

CoDeepNEAT can evolve repetitive modular structure efficiently. Furthermore, because small mutations 
in the modules and blueprints often lead to large changes in the assembled network structure, CoDeepNEAT 
can explore more diverse and deeper architectures than DeepNEAT. An example application to the CIFAR10 
domain is presented next.  

3.3 Evolving DNNs in the CIFAR-10 Benchmark  

In this experiment, CoDeepNEAT was used to evolve the topology of a convolutional neural network (CNN) 
to maximize its classification performance on the CIFAR-10 dataset, a common image classification bench-
mark. The dataset consists of 50,000 training images and 10,000 testing images. The images consist of 32x32 
color pixels and belong to one of 10 classes. For comparison, the neural network layer types were restricted to 
those used by Snoek et al. (2015) in their Bayesian optimization of CNN hyperparameters. Also following 
Snoek et al., data augmentation consisted of converting the images from RGB to HSV color space, adding 
random perturbations, distortions, and crops, and converting them back to RGB color space.  

CoDeepNEAT was initialized with populations of 25 blueprints and 45 modules. From these two pop-
ulations, 100 CNNs were assembled for fitness evaluation in every generation. Each node in the module 
chromosome represents a convolutional layer. Its hyperparameters determine the various properties of the layer 
and whether additional max-pooling or dropout layers are attached (Table 1). In addition, a set of global 
hyperparameters were evolved for the assembled network. During fitness evaluation, the 50,000 images were 
split into a training set of 42,500 samples and a validation set of 7,500 samples. Since training a DNN is 
computationally very expensive, each network was trained for eight epochs on the training set. The validation 
set was then used to determine classification accuracy, i.e. the fitness of the network. After 72 generations of 
evolution, the best network in the population was returned.  

 

 



Node Hyperparameter	 Range 
Number of Filters	 [32, 256]	
Dropout Rate	 [0, 0.7]	
Initial Weight Scaling	 [0, 2.0]	
Kernel Size	 {1, 3}	
Max Pooling	 {True, False} 
Global Hyperparameter	 	
Learning Rate	 [0.0001, 0.1]	
Momentum	 [0.68, 0.99]	
Hue Shift	 [0, 45]	
Saturation/Value Shift	 [0, 0.5]	
Saturation/Value Scale	 [0, 0.5]	
Cropped Image Size	 [26, 32]	
Spatial Scaling	 [0, 0.3]	
Random Horizontal Flips	 {True, False}	
Variance Normalization	 {True, False}	
Nesterov Accelerated Gradient	 {True, False} 

Table 1: Node and global hyperparameters evolved in the CIFAR-10 domain. 
	
	

After evolution was complete, the best network was trained on all 50,000 training images for 300 epochs, 
and the classification error measured. This error was 7.3%, comparable to the 6.4% error reported by Snoek et 
al. (2015). Interestingly, because only limited training could be done during evolution, the best network 
evolved by CoDeepNEAT trains very fast. While the network of Snoek et al. takes over 30 epochs to reach 
20% test error and over 200 epochs to converge, the best network from evolution takes only 12 epochs to reach 
20% test error and around 120 epochs to converge. This network utilizes the same modules multiple times, 
resulting in a deep and repetitive structure typical of many successful DNNs (Figure 2).  

4 Evolution of LSTM Architectures  

Recurrent neural networks, in particular those utilizing LSTM nodes, is another powerful approach to DNN. 
Much of the power comes from repetition of LSTM modules and the connectivity between them. In this sec-
tion, CoDeepNEAT is extended with mutations that allow searching for such connectivity, and the approach 
is evaluated in the standard benchmark task of language modeling.  

4.1 Extending CoDeepNEAT to LSTMs  

Long Short Term Memory (LSTM) consists of gated memory cells that can integrate information over longer 
time scales (as compared to simply using recurrent connections in a neural network). LSTMs have recently 
been shown powerful in supervised sequence processing tasks such as speech recognition (Graves and Jaitly 
2014) and machine translation (Bahdanau et al. 2015).  

 

 



 
 
Figure 2: Top: Simplified visualization of the best network evolved by CoDeepNEAT for the CIFAR-10 
domain. Node 1 is the input layer, while Node 2 is the output layer. The network has repetitive structure 
because its blueprint reuses same module in multiple places. Bottom: A more detailed visualization of the same 
network. 

Recent research on LSTMs has focused in two directions: Finding variations of individual LSTM memory 
unit architecture (Bayer et al. 2009; Cho et al. 2014; Jozefowicz et al. 2015; Klaus et al. 2014), and discovering 
new ways of stitching LSTM layers into a network (Chung et al. 2015; Kalchbrenner et al. 2015; Zilly et al. 
2016). Both approaches have improved performance over vanilla LSTMs, with best recent results achieved 
through network design. The CoDeepNEAT method incorporates both approaches: neuroevolution searches 
for both new LSTM units and their connectivity across multiple layers at the same time.  

CoDeepNEAT was slightly modified to make it easier to find novel connectivities between LSTM layers. 
Multiple LSTM layers are flattened into a neural network graph that is then modified by neuroevolution. There 
are two types of mutations: one enables or disables a connection between LSTM layers, and the other adds or 
removes skip connections between two LSTM nodes. Recently, skip connections have led to performance 
improvements in deep neural networks, which suggests that they could be useful for LSTM networks as well. 
Thus, neuroevolution modifies both the high-level network topology and the low-level LSTM connections.  

In each generation, a population of these network graphs (i.e. blueprints), consisting of LSTM variants  
(i.e. modules with possible skip connections), is created. The individual networks are then trained and tested 
with the supervised data of the task. The experimental setup and the language modeling task are described 
next.  

4.2 Evolving DNNs in the Language Modeling Benchmark  

One standard benchmark task for LSTM network is language modeling, i.e. predicting the next word in a large 
text corpus. The benchmark utilizes the Penn Tree Bank (PTB) dataset (Marcus et al. 1993), which consists of 
929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary.  



 
Figure 3: The best-performing LSTM variant after 25 generations of neuroevolution. It includes a novel skip 
connection between the two memory cells, resulting in 5% improvement over the vanilla LSTM baseline. Such 
improvements are difficult to discover by hand; CoDeepNEAT with LSTM-specific mutation searches for 
them automatically.  

A population of 50 LSTM networks was initialized with uniformly random initial connection weights 
within [-0.05, 0.05]. Each network consisted of two recurrent layers (vanilla LSTM or its variants) with 650 
hidden nodes in each layer. The network was unrolled in time upto 35 steps. The hidden states were initialized 
to zero. The final hidden states of the current minibatch was used as the initial hidden state of the subsequent 
minibatch (successive minibatches sequentially traverse the training set). The size of each minibatch was 20. 
For fitness evaluation, each network was trained for 39 epochs. A learning rate decay of 0.8 was applied at the 
end of every six epochs; the dropout rate was 0.5. The gradients were clipped if their maximum norm 
(normalized by minibatch size) exceeded 5. Training a single network took about 200 minutes on a GeForce 
GTX 980 GPU card.  

After 25 generations of neuroevolution, the best network improved the performance on PTB dataset by 5% 
(test-perplexity score 78) as compared to the vanilla LSTM (Zaremba et al. 2014). As shown in Figure3, this 
LSTM variant consists of a feedback skip connection between the memory cells of two LSTM layers. This 
result is interesting because it is similar to a recent hand-designed architecture that also outperforms vanilla 
LSTM (Chung et al. 2015).  

The initial results thus demonstrate that CoDeepNEAT with just two LSTM-specific mutations can auto-
matically discover improved LSTM variants. It is likely that expanding the search space with more mutation 
types and layer and connection types would lead to further improvements.  

 



 
Global Hyperparameter Range 
Learning Rate  [0.0001, 0.1]  
Momentum  [0.68, 0.99]  
Shared Embedding Size  [128, 512]  
Embedding Dropout  [0, 0.7]  
LSTM Recurrent Dropout  {True, False} 
Nesterov Momentum  {True, False} 
Weight Initialization  {Glorot normal, He normal} 
Node Hyperparameter  Range  
Layer Type  {Dense, LSTM} 
Merge Method  {Sum, Concat} 
Layer Size  {128, 256} 
Layer Activation  {ReLU, Linear} 
Layer Dropout  [0, 0.7]  

 

Table 2: Node and global hyperparameters evolved for the image captioning case study.  

5 Application Case Study: Image Captioning for the Blind  

In a real-world case study, the vision and language capabilities of CoDeepNEAT were combined to build a 
real-time online image captioning system. In this application, CoDeepNEAT searches for architectures that 
learn to integrate image and text representations to produce captions that blind users can access through 
existing screen readers. This application was implemented for a major online magazine website. Evolved 
networks were trained with the open source MSCOCO image captioning dataset (Chen et al. 2015), along with 
a new dataset collected for this website.  

5.1 Evolving DNNs for Image Captioning  

Deep learning has recently provided state-of-the-art performance in image captioning, and several diverse 
architectures have been suggested (Karpathy and Fei-Fei 2015; Vedantam et al. 2017; Vinyals et al. 2015; Xu 
et al. 2015; You et al. 2016). The input to an image captioning system is a raw image, and the output is a text 
caption intended to describe the contents of the image. In deep learning approaches, a convolutional network 
is usually used to process the image, and recurrent units, often LSTMs, to generate coherent sentences with 
long-range dependencies.  

As is common in existing approaches, the evolved system uses a pretrained ImageNet model (Szegedy et 
al. 2016b) to produce initial image embeddings. The evolved network takes an image embedding as input, 
along with a one-hot text input. As usual, in training the text input contains the previous word of the ground 
truth caption; in inference it contains the previous word generated by the model (Karpathy and Fei-Fei 2015; 
Vinyals et al. 2015).  

In the initial CoDeepNEAT population the image and text inputs are fed to a shared embedding layer, 
which is densely connected to a softmax output over words. From this simple starting point, CoDeepNEAT 
evolves architectures that include fully connected layers, LSTM layers, sum layers, concatenation layers, and 
sets of hyperparameters associated with each layer, along with a set of global hyperparameters (Table 2). In 
particular, the well-known Show and Tell image captioning architecture (Vinyals et al. 2015) is in this search 
space, providing a baseline with which evolution results can be compared. These components and the glue that 
connects them are evolved as described in Section 3.2, with 100 networks trained in each generation. 



 

Figure 4: An iconic image from an online magazine captioned by an evolved model. The model provides a 
suitably detailed description without any unnecessary context.  

Since there is no single best accepted metric for evaluating captions, the fitness function is the mean across 
three metrics (BLEU, METEOR, and CIDEr; (Chen et al. 2015)) normalized by their baseline values. Fitness 
is computed over a holdout set of 5000 images, i.e. 25,000 image-caption pairs.  

To keep the computational cost reasonable, during evolution the networks are trained for only six epochs, 
and only with a random 100,000 image subset of the 500,000 MSCOCO image-caption pairs. As a result, there 
is evolutionary pressure towards networks that converge quickly: The best resulting architectures train to near 
convergence 6 times faster than the baseline Show and Tell model (Vinyals et al. 2015). After evolution, the 
optimized learning rate is scaled by one-fifth to compensate for the subsampling.  

5.2 Building the Application  

The images in MSCOCO are chosen to depict “common objects in context”. The focus is on a relatively small 
set of objects and their interactions in a relatively small set of settings. The internet as a whole, and the online 
magazine website in particular, contain many images that cannot be classified as “common objects in context”. 
Other types of images from the magazine include staged portraits of people, infographics, cartoons, abstract 
designs, and iconic images, i.e. images of one or multiple objects out of context such as on a white or patterned 
background. Therefore, an additional dataset of 17,000 image-caption pairs was constructed for the case study, 
targeting iconic images in particular. Four thousand images were first scraped from the magazine website, and 
1000 of them were identified as iconic. Then, 16,000 images that were visually similar to those 1000 were 
retrieved automatically from a large image repository. A single ground truth caption for each of these 17K 
images was generated by human subjects through MightyAI1. The holdout set for evaluation consisted of 
100 of the original 1000 iconic images, along with 3000 other images.  

During evolution, networks were trained and evaluated only on the MSCOCO data. The best architecture 
from evolution was then trained from scratch on both the MSCOCO and MightyAI datasets in an iterative 
alternating approach: one epoch on MSCOCO, followed by five epochs on MightyAI, until maximum per-
formance was reached on the MightyAI holdout data. Beam search was then used to generate captions from 
the fully trained models. Performance achieved using the MightyAI data demonstrates the ability of evolved 
architectures to generalize to domains towards which they were not evolved.  

Once the model was fully-trained, it was placed on a server where it can be queried with images to caption. 
A JavaScript snippet was written that a developer can embed in his/her site to automatically query the model 
to caption all images on a page. This snippet runs in an existing Chrome extension for custom scripts and 
automatically captions images as the user browses the web. These tools add captions to the ‘alt’ field of images, 
which screen readers can then read to blind internet users (Figure 4).  

 
 
																																																													
1	 https://mty.ai/computer-vision/	



 
 
 

Model  BLEU-4  CIDEr  METEOR  
DNGO (Snoek et al. 2015)  26.7  —  —  
Baseline (Vinyals et al. 2015)  27.7  85.5  23.7  
Evolved  29.1  88.0  23.8  

 
Table 3: The evolved network improves over the hand-designed baseline when trained on MSCOCO alone.  

5.3 Image Captioning Results  

Trained in parallel on about 100 GPUs, each generation took around one hour to complete. The most fit 
architecture was discovered on generation 37 (Figure 5). This architecture performs better than the hand-tuned 
baseline (Vinyals et al. 2015) when trained on the MSCOCO data alone (Table 3).  

However, a more important result is the performance of this network on the magazine website. Because no 
suitable automatic metrics exist for the types of captions collected for the magazine website (and existing 
metrics are very noisy when there is only one reference caption), captions generated by the evolved model on 
all 3100 holdout images were manually evaluated as correct, mostly-correct, mostly-incorrect, and incorrect 
(Figure 6). Figure 7 shows some examples of good and bad captions for these images.  

The model is not perfect, but the results are promising. The evolved network is correct or mostly correct 
on 63% of iconic images and 31% of all images. There are many known improvements that can be 
implemented, including ensembling diverse architectures generated by evolution, fine-tuning of the ImageNet 
model, using a more recent ImageNet model, and performing beam search or scheduled sampling during 
training (Vinyals et al. 2016) (preliminary experiments with ensembling alone suggest improvements of about 
20%). For this application, it is also important to include methods for automatically evaluation caption quality 
and filtering captions that would give an incorrect impression to a blind user. However, even without these 
additions, the results demonstrate that it is now possible to develop practical applications through evolving 
DNNs.  

6 Discussion and Future Work  

The results in this paper show that the evolutionary approach to optimizing deep neural networks is feasible: 
The results are comparable to hand-designed architectures in benchmark tasks, and it is possible to build real-
world applications based on the approach. It is important to note that the approach has not yet been pushed to 
its full potential. It takes a couple of days to train each deep neural network on a state-of-the-art GPU, and over 
the course of evolution, thousands of them need to be trained. Therefore, the results are limited by the available 
computational power.  

Interestingly, since it was necessary to train networks only partially during evolution, evolution is biased 
towards discovering fast learners instead of top performers. This is an interesting result on its own: evolution 
can be guided with goals other than simply accuracy, including training time, execution time, or memory 
requirements of the network. On the other hand, if it was possible to train the networks further, it would be 
possible to identify top performers more reliably, and final performance would likely improve.  

 
 



 
Figure 5: The most fit architecture found by evolution. Among the components in its unique structure are six 
LSTM layers, four summing merge layers, and several skip connections. A single module consisting of two 
LSTM layers merged by a sum is repeated three times. There is a path from the input through dense layers to 
the output that bypasses all LSTM layers, providing the softmax with a more direct view of the current input. 
The motif of skip connections with a summing merge is similar to residual architectures that are currently 
popular in deep learning (He et al. 2015; Szegedy et al. 2016a).  



 

 
Figure 6: Results for captions generated by an evolved model for the online magazine images rated from 1 to 
4, with 4=Correct, 3=Mostly Correct, 2=Mostly Incorrect, 1=Incorrect. Left: On iconic images, the model is 
able to get about one half correct; Right: On all images, the model gets about one fifth correct. The superior 
performance on iconic images shows that it is useful to build supplementary training sets for specific image 
types.  

In order to speed up evolution, other techniques may be developed. For instance, it may be possible to seed the 
population with various state-of-the-art architectures and modules, instead of having to re-discover them 
during evolution.  

Significantly more computational resources are likely to become available in the near future. Already 
cloud-based services such as Amazon Web Services offer GPU computation with a reasonable cost, and efforts 
to harness idle cycles on gaming center GPUs are underway. At Sentient, for example, a distributed AI 
computing system called DarkCycle is being built that currently utilizes 2M CPUs and 5000 GPUs around the 
world, resulting in a peak performance of 9 petaflops, on par with the fastest supercomputers in the world. Not 
many approaches can take advantage of such power, but evolution of deep learning neural networks can. The 
search space of different components and topologies can be extended, and more hyperparameters be optimized. 
While cloud services such as AutoML provide some such functionality, and benefit from the increasing 
computing power as well, they currently represent brute-force approaches that are unlikely to scale as well. 
Given the results in this paper, the evolutionary approach is likely to discover designs that are superior to those 
that can be developed by hand today; it is also likely to make it possible to apply deep learning to a wider array 
of tasks and applications in the future.  

7 Conclusion  

Evolutionary optimization makes it possible to construct more complex deep learning architectures than can 
be done by hand. The topology, components, and hyperparameters of the architecture can all be optimized 
simultaneously to fit the requirements of the task, resulting in superior performance. This automated design 
can make new applications of deep learning possible in vision, speech, language, and other areas. Currently 
such designs are comparable with best human designs; with anticipated increases in computing power, they 
should soon surpass them, putting the power to good use.  

 



Figure 7: Top: Four good captions. The model is able to abstract about ambiguous images and even describe 
drawings, along with photos of objects in context. Bottom: Four bad captions. When it fails, the output of the 
model still contains some correct sense of the image. 

References  

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to aerobatic helicopter 
flight. In Advances in Neural Information Processing Systems 19, 2007.  

J. Bagnell and J. Schneider. Autonomous helicopter control using reinforcement learning policy search methods. In 
Proceedings of the International Conference on Robotics and Automation 2001. IEEE, May 2001.  

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In  
Proceedings of International Conference on Learning Representations, 2015.  

J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber.  Evolving memory cell structures for sequence learning. In 
Proceedings of International Conference on Artificial Neural Networks, pages 755–764, 2009.  

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent neural networks for multivariate time series with 
missing values. ArXiv 1606.01865, 2016.  

 
X. Chen, H. Fang, T. Y. Lin, R. Vedantam, S. Gupta, P. Dollar, and C. L. Zitnick. Microsoft coco captions: Data 

collection and evaluation server. ArXiv 1504.00325, 2015. 
  

K. Cho, B. van Merrienboer, C. Gehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations 
using RNN encoder-decoder for statistical machine translation. ArXiv 1406.1078, 2014.  

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Gated feedback recurrent neural networks. ArXiv 1502.02367, 2015.  

 

 



R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with 
multitask learning. In Proceedings of the 25th International Conference on Machine Learning, pages 160–
167. ACM, 2008.  

C. Fernando, D. Banarse, F. Besse, M. Jaderberg, D. Pfau, M. Reynolds, M. Lactot, and D. Wierstra. Convolution 
by evolution: Differentiable pattern producing networks. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO 2016), Denver, CO, 2016.  

D. Floreano, P. Durr, and C. Mattiussi. Neuroevolution: From architectures to learning. Evolutionary Intelligence, 
1:47–62, 2008.  

F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adaptive Behavior, 5:317–
342, 1997.  

F. Gomez and R. Miikkulainen. Solving non-Markovian control tasks with neuroevolution. In Proceedings of the 
16th International Joint Conference on Artificial Intelligence, pages 1356–1361, San Francisco, 1999.  

F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through cooperatively coevolved 
synapses. Journal of Machine Learning Research, 9:937–965, 2008.  

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: Automatic bug correction in real programs. ACM 
Transactions on Software Engineering, 38, 2012.  

A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of 
the 31st International Conference on Machine Learning, pages 1764–1772, 2014.  

A. Graves, A.Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In 2013 IEEE 
International Conference on Acoustics, Speech and Signal Processing, pages 6645–6649. IEEE, 2013.  

F. Gruau and D. Whitley. Adding learning to the cellular development of neural networks: Evolution and the 
Baldwin effect. Evolutionary Computation, 1:213–233, 1993.  

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. ArXiv 1512.03385, 2015.  

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. ArXiv 1603.05027, 2016.  

G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex Systems, 1:495–502, 1987.  
 
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780, 1997.  

	
H. Hoos. Programming by optimization. Communications of the ACM, 55:70–80, 2012.  

C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In Proceedings of the 2003 Congress 
on Evolutionary Computation, pages 2588–2595, Piscataway, NJ, 2003. IEEE Press.  

R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures. In 
Proceedings of the 32nd International Conference on Machine Learning, pages 2342–2350, 2015.  

N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-term memory. ArXiv 1507.01526, 2015.  

A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proceedings of 
Computer Vision and Pattern Recognition Conference, pages 3128–3137, 2015.  

G. Klaus, R. Srivastava, J. Koutnik, R. Steunebrink, and J. Schmidhuber. Lstm: A search space odyssey. ArXiv 
1503.04069, 2014.  

R. Koppejan and S. Whiteson. Neuroevolutionary reinforcement learning for generalized control of simulated 
helicopters. Evolutionary Intelligence, 4:219–241, 2011.  

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. 
Proceedings of the IEEE, 86:22782324, 1998.  



J. Lehman and R. Miikkulainen. Neuroevolution. Scholarpedia, 8(6):30977, 2013.  

J. Z. Liang and R. Miikkulainen. Evolutionary bilevel optimization for complex control tasks. In Proceedings of 
the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain, July 2015.  

I. Loshchilov and F. Hutter. CMA-ES for hyperparameter optimization of deep neural networks. ArXiv 1604.07269, 
2016.  

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english: The Penn 
treebank. Computational Linguistics, 19(2), 1993.  

R. Miikkulainen, N. Iscoe, A. Shagrin, R. Rapp, S. Nazari, P. McGrath, C. Schoolland, E. Achkar, M. Brundage, J. 
Miller, J. Epstein, G. Lamba. Sentient Ascend: AI-Based Massively Multivariate Conversion Rate 
Optimization. In Proceedings of Innovative Applications of Artificial Intelligence, 2018  

D. J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. In Proceedings of the 
11th International Joint Conference on Artificial Intelligence, pages 762–767. San Francisco: Morgan 
Kaufmann, 1989.  

D. E. Moriarty and R. Miikkulainen. Forming neural networks through efficient and adaptive coevolution. 
Evolutionary Computation, 5:373–399, 1997.  

A. Y. Ng, H. J. Kim, M. Jordan, and S. Sastry. Autonomous helicopter flight via reinforcement learning. In Advances 
in Neural Information Processing Systems 16, 2004.  

J. Y.-H. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: 
Deep networks for video classification. ArXiv 1503.08909, 2015.  

 
A. Sinha, P. Malo, P. Xu, and K. Deb. A bilevel optimization approach to automated parameter tuning. In 

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, 
Canada, July 2014.  

 
J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M.M.A. Patwary, M. Prabhat, and R. P. Adams. 

Scalable Bayesian optimization using deep neural networks. In Proceedings of the International Conference 
on Machine Learning, pages 2171–2180, 2015.  
	

K. O. Stanley. Compositional pattern producing networks: A novel abstraction of development. Genetic 
Programming and Evolvable Machines, 8:131–162, June 2007.  

K. O. Stanley and R. Miikkulainen. Evolving Neural Networks Through Augmenting Topologies. Evolutionary 
Computation, 10:99–127, 2002.  

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, inception-resnet and the impact of residual 
connections on learning. ArXiv 1602.07261, 2016a.  

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, , and Z. Wojna. Rethinking the inception architecture for computer 
vision. In Proceedings of Computer Vision and Pattern Recognition Conference, pages 2818–2826, 2016b.  

R. Vedantam, S. Bengio, K. Murphy, D. Parikh, and G. Chechik. Context-aware captions from context-agnostic 
supervision. ArXiv 1701.02870, 2017.  

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In Proceedings 
of Computer Vision and Pattern Recognition Conference, pages 3156–3164, 2015.  

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons learned from the 2015 MSCOCO image 
captioning challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.  

K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salkhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and 
tell: Neural image caption generation with visual attention. In Proceedings of the International Conference on 
Machine Learning, pages 77–81, 2015.  



X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.  

Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Image captioning with semantic attention. In Proceedings of 
Computer Vision and Pattern Recognition Conference, pages 4651–4659, 2016.  

W. Zaremba, I. Sutskever, and Oriol Vinyals. Recurrent neural network regularization. ArXiv 1409.2329, 2014.  

J. G. Zilly, R. K. Srivastava, J. Koutnik, and J. Schmidhuber. Recurrent highway networks. ArXiv 1607.03474, 
2016.  

B. Zoph and Q. V. Le.  Neural architecture search with reinforcement learning. ArXiv 1611.01578, 2016.  


