
Evolutionary Supervised Machine Learning

Risto Miikkulainen
The University of Texas at Austin and Cognizant AI Labs

This chapter provides an overview of evolutionary approaches to supervised learning. It starts with the
definition and scope of the opportunity, and then reviews three main areas: evolving general neural network
designs, evolving solutions that are explainable, and forming a synergy of evolutionary and gradient-based
methods.

1 Introduction

In supervised learning problems, in principle the correct answers are known for each input. In the most
general sense, the learner has access to a supervisor who tells what needs to be done for each input; in
practice, such information is collected into a dataset ahead of time and sampled during the learning, and
the dataset may be noisy and incomplete. The challenge in supervised learning is to construct a model that
accurately predicts the outputs for new samples that are not in the dataset. Thus, the model imitates known
behavior in a way that generalizes to new situations as well as possible (Figure 1).

Examples of supervised learning include classifying objects in visual images; diagnosing pathologies in
X-ray images; predicting the next word in a stream of text; predicting future values of stocks; predicting the
weather. Given that data is now collected routinely across various human activities in business, healthcare,
government, education, and so on, many opportunities exist for using supervised learning in the real world.

The standard approach is gradient descent on neural networks, i.e. making small changes to the network
weights (or parameters) in order to reduce the error (or loss) on known examples as quickly as possible. This
approach has been commonplace since the 1980s (Schmidhuber, 2022, although conceived much earlier;).
However, given a million-fold increase in computing power from just a couple of decades ago (Routley,
2017), it has recently become possible to scale supervised learning techniques to much larger datasets and
architectures. Much of the power of modern supervised learning lies in this scale-up (Canatar et al., 2021).
While the basis for this success still needs to be understood better, it has already revolutionized the field of
artificial intelligence.

Evolutionary machine learning constitutes a distinctly different approach to supervised learning. It is
not an incremental improvement method based on gradients, but instead a search method guided by fitness
feedback, or reinforcement. It is therefore more general, but also cannot as naturally take advantage of
massive datasets as gradient-based methods can. On the other hand, many domains in the real world do
exist where such a scale-up is not possible. Datasets are sometimes very specific to the application (e.g. in
a business domain, or medicine, or engineering design) and consist of thousands, instead of millions, of
samples. In such domains, evolutionary supervised learning can provide two advantages, leading to two
opportunities for advancing supervised machine learning.

The first opportunity is to take into account other goals than simply accuracy, i.e. to evolve general neural
network designs. Note that a supervised signal (i.e. a gradient vector), can be converted to a fitness signal
(i.e. a scalar, such as a norm of the gradient). Specific information will be lost; on the other hand, it is then
possible to combine the accuracy goal with other goals. For instance, the networks evolved can be small

In Handbook of Evolutionary Machine Learning, W. Banzhaf, P. Machado, and M.

Zhang (Eds.), New York, 2023. Springer.

(x1,y1)

(x2,y2)

(xn,yn)

(x1,y1)

(x2,y2)

(xm,ym)

(x1,y1)

(x2,y2)

(xk,yk)

Training set

Validation set Test set

Models at t = 0..T

Estimated
performance

Final model

…

…
…

…

T

0

Figure 1: A general setup for supervised learning. Each input example xi in the dataset is paired with
the desired output yi. The dataset is split into a training set that is used to modify the model over time, a
validation set that is used to decide which model to choose as the final result of learning, and a test set that is
used to estimate performance of the model on future examples. The system thus learns a model that imitates
the known behavior and generalizes to future situations as well as possible.

enough to be transparent. It may be possible to improve regularization in such networks at the same time.
Such networks can potentially take better advantage of minimal computing resources, and even fit better to
hardware constraints.

The second opportunity is explainability. That is, gradients are inherently opaque, and machine learning
systems based on them are essentially black boxes. This opaqueness makes it difficult to deploy them in
many applications in the real-world. For instance, in domains like healthcare and finance it is important to be
able to verify that the information used to draw the conclusion was relevant, unbiased, and trustworthy. In
contrast, evolutionary machine learning can be used to discover solutions that are transparent. For instance, a
solution can be represented in terms of decision trees, classifiers, programs, and rule sets.

A third opportunity for evolutionary supervised learning has emerged with the scale-up itself. Deep
learning systems have become extremely large and complex, with many elements that interact nonlinearly.
Like in many areas of system design, it is no longer possible for humans to design them optimally. However,
evolutionary metalearning can be used to configure the architectures, hyperparameters, loss functions,
activation functions, data selection and augmentation, and even learning methods so that the resulting deep
learning models perform as well as possible. In this manner, it is possible to use evolution synergetically with
gradient descent. Such automatic machine learning makes deep learning systems accessible to more people,
and the designs can be optimized for size and data, making it possible to apply it more broadly.

These three opportunities will each be reviewed in the sections that follow.

2

2 Evolving general neural network designs

In evolving general neural network designs, gradient descent is replaced entirely with evolutionary opti-
mization. Fitness is still at least partially based on the loss or accuracy on the supervised dataset, but only
as a scalar value. Most importantly, evolution can be used to optimize other aspects of the design at the
same time, such as explainability (e.g. through complexification), size (e.g. to improve regularization, or
to fit within computational constraints), of hardware fit more generally (e.g. using threshold units or other
non-differentiable components). These benefits currently apply to compact neural networks but could extend
to deep learning as well.

2.1 Compact Neural Networks

Neural networks have been evolved for a long time, starting from the direct approaches of Montana and
Davis (1989). Most of the techniques were developed for sequential decision tasks, especially those that are
POMDP (Partially Observable Markov Decision Processes), i.e. tasks where the state is not fully observable
and where recurrency thus matters. However, they can be used in supervised learning as well.

One example is the NEAT method (NeuroEvolution of Augmenting Topologies; Papavasileiou et al.,
2021; Stanley and Miikkulainen, 2002), which optimizes both the architecture and the weights of a neural
network. The main idea is to start small and complexify, which results in compact networks that are possible
to understand. NEAT starts with a population of networks where the inputs are connected directly to the
outputs. As evolution progresses, hidden nodes and recurrent as well as feedforward connections are added.
Such architectural innovations are protected through speciation, i.e. they do not have to compete with other
architectures until their parameters have been sufficiently optimized. Each innovation receives a unique
identifier that allows taking advantage of crossover even among population of diverse architectures. As a
result, NEAT evolves compact architectures where every complexification is evaluated and found useful or
not.

Such compact networks are very different from deep learning networks in that they often employ
principled and interpretable designs. For instance, in a combined foraging-pursuit-evasion task of simulated
Khepera robots (Stanley and Miikkulainen, 2004), evolution first discovered a simple follow-the-opponent
behavior that was often successful by chance: The agent occasionally crashed into the opponent when it
had more energy than the opponent (Figure 2a). It then evolved a hidden node that allowed it to make an
informed switch between behaviors: Attack when it had high energy, and rest when it did not (Figure 2b).
Another added node made it possible to predict the agent’s own and its opponent’s energy usage from afar
and attack only when victory was likely (Figure 2c). The most complex strategy, with several more nodes
and complex recurrent connections between them, allowed the agent to predict also the opponent’s behavior,
encourage it to make mistakes, and take advantage of the mistakes to win (Figure 2d).

Although this example illustrates a sequential decision task, the same principles apply to supervised
learning with NEAT. Note that these principles are very different from those in deep learning. Performance
with very large networks is based on overparameterization where individual components perform only
minimal operations: for instance, the residual module in ResNet architectures combines bypassing the
module with the transformation that the module itself computes (He et al., 2016). In contrast, in NEAT every
complexification is there for a purpose that can in principle be identified in the evolutionary history. It thus
offers an alternative solution, one that is based on principled neural network design.

This kind of compact evolved neural networks can be useful in four ways in supervised learning:

1. They can provide an explainable neural network solution. That is, the neural network still performs

3

(a) (b) (c) (d)

Figure 2: Evolutionary Discovery through Complexification. As the NEAT neuroevolution method
(Stanley and Miikkulainen, 2002) complexifies networks, the behaviors that these networks generate become
more complex as well. It is thus possible to identify how the network generates the behavior it does. In
the simultaneous pursuit-evasion-foraging task for simulated Khepera robots, the approach discovered (a)
opponent following, (b) behavior selection, (c) opponent modeling, and (d) opponent control through several
such complexification steps (Stanley and Miikkulainen, 2004). Nodes are depicted as red squares and
numbered in the order they were created. Positive connections are black and negative are blue, recurrent
connections are indicated by triangles, and the width of the connection is proportional to its strength.
Complexifying evolution thus provides a way of understanding network performance. (Figures from Stanley,
2004)

based on recurrency and embeddings, but its elements are constructed to provide a particular function-
ality, and therefore its behavior is transparent (Aharonov-Barki et al., 2001; Ijspeert, 2008; Kashtan
and Alon, 2005; Stanley and Miikkulainen, 2004).

2. They can provide regularized neural network solutions, instead of overfitting to the dataset. The
networks are compact, which generally regularization (Ganon et al., 2003; Oymak, 2018; Reed, 1993),
and they are chosen based on their overall performance instead of fine-tuned to fit individual examples.
This property should be particularly useful when the datasets are relatively small, which is the case in
many practical applications. Thus they can extend the scope of machine learning applications.

3. They can utilize minimal hardware resources well. The advantages of deep-learning networks do not
emerge until a very large number of parameters. If the hardware does not allow that scale (e.g. in
edge devices), evolved networks provide an alternative principle that can be optimized to the given
resources.

4. They can be constructed to fit hardware constraints. Gradient descent in principle requires high
precision weights and differentiable activation functions that are expensive to implement in hardware.
In contrast, evolution can be used to optimize the performance of networks with e.g. quantized weights,
linear threshold units, or FPGA-compatible components that are easier to implement (Gaier and Ha,
2019; Liu et al., 2021b; Shayani et al., 2008).

While examples of each of these advantages exist already, their large-scale applications are still future
work and an interesting research opportunity. Another interesting opportunity is to scale them up to large
networks, discussed next.

2.2 Deep Networks

As discussed above, evolution of entire networks usually focuses on small, recurrent architectures with up to
hundreds of thousands of parameters. Evolutionary operations can still search such a space effectively. At the

4

Figure 3: Compact Indirect Encoding of Deep Neural Networks. In the approach of Such et al. (2017),
a population of initial networks with parameters θ0 are first created through an initialization function ϕ.
Subsequent generations are created through mutations ψ seeded τi. Only the seeds τi need to be stored and
evolved; the current population can be created by applying the same sequence of mutations to θ0. In this way,
indirect encoding makes it possible to represent deep neural networks compactly enough so that they can be
evolved in their entirety. (Figure from Such et al., 2017)

outset, it seems difficult to scale this approach to deep learning networks, which routinely contain hundreds
of millions of parameters, and sometimes up to hundreds of billions of them.

There are special techniques that may make it possible to optimize solutions in such very high-dimensional
spaces. For instance, Deb and Myburgh (2017) showed that in the specific case of metal casting scheduling,
it was possible to establish a constrained search, and solve problems with up to a billion parameters. It may
be possible to develop similar techniques for neuroevolution as well and thereby scale up to deep learning
networks.

Another approach is to utilize indirect encodings. Instead of optimizing each parameter independently, a
coding is evolved that is then mapped to the final design through a developmental or a generative process.
For instance in the HyperNEAT approach (Stanley et al., 2009), such a decoding neural network is evolved to
output weight values for another neural network that actually performs the task. The performance network is
embedded into a substrate where each of its neurons is located at particular coordinates; given the coordinates
of the source and target neuron as input, the decoding neural network generates the weight of the connection
between them as its output. Importantly, it is possible to sample the substrate at different resolutions, i.e.
embed a very large number of neurons in it, and thus use the same decoding network to generate very large
performance networks. The decoding networks are termed compositional pattern-producing networks because
the weights they generate often follow regular patterns over the substrate. This observation suggests that the
HyperNEAT approach could be used to generate structures over space, such as 2D visual or 1D time series
domains. Whether it can be extended to layered structures and general architectures remains an open question

Evolving such structured deep learning networks may be achieved by other means. For instance, Such
et al. (2017) developed a method where each individual network is represented indirectly as a sequence of
mutation operators performed on an initial set of weight parameters (Figure 3). The initial set may have
millions of parameters, but they only need to be stored once for each individual lineage. The mutations can be
encoded efficiently as a sequence of seeds that generate the changes through a precomputed table. Thus, the
compression rate depends on the number of generations but is in the order of 103 − 104-fold. It thus makes it
possible to evolve deep learning networks with millions of parameters, as was demonstrated in several tasks
in the Atari game-playing domain.

While evolution of entire very large networks is still a new area, these initial results suggest that it may

5

indeed be possible. The benefits of general design, reviewed in the previous section, may then apply to them
as well.

3 Evolving explainable solutions

Most AI today is based on neural networks. Given the vast amount of available data and compute, impressive
performance is indeed possible in many real-world classification and prediction tasks. However, neural
networks are inherently opaque. The knowledge they have learned is embedded in very high-dimensional
vector spaces, with a lot of redundancy and overlap, and with nonlinear interactions between elements.
Even though they may perform well on average, it is difficult to deploy such a system when we do not
understand how it arrives at a particular answer in any individual case. The system may be overfitting, fooled
by adversarial input, missing an important factor, or utilizing unfair bias to make its decision (Dai et al., 2020;
Huang et al., 2020; Sharma et al., 2020). Explainability has thus emerged as one of the main challenges in
taking AI to the real world.

Evolving compact neural networks through complexification may make their function transparent. How-
ever, explainability in supervised learning requires more: For each new example, the system should be able
to identify the information and principles used to arrive at the decision. Structures different from neural
networks are thus needed, such as decision trees, classifiers, programs, and rules. While they cannot be easily
modified by gradients, evolutionary machine learning can be used to construct them, as reviewed in this
section.

3.1 Decision trees

Decision trees are a classical supervised learning method with low computational overhead and transparent,
explainable performance (Breiman et al., 1984; Quinlan, 1986, 1993). In its most basic form, samples are
represented as vectors of features, and the tree is used to classify them into discrete categories. Each node of
the tree looks at one feature, and based on its value, passes the sample down to one of the nodes below it; the
leaf nodes each assign a category label.

The traditional approach to constructing a decision tree is to do it top down in a greedy fashion: At each
step, a feature that is deemed most useful for branching is chosen, and the process continues recursively in
each branch until all training samples in a branch have the same category label. The choice can be based e.g.
on the information gain in the branching, which is a heuristic aimed at constructing simple and shallow trees,
which in turn are likely to generalize better.

However, the greedy construction is often suboptimal. It is difficult to take into account interactions
between features, and construct trees that are balanced, and often trees end up complex and prone to overfitting
(Barros et al., 2012). Evolutionary search provides an alternative: it can search for optimal trees globally,
taking into account both accuracy and size objectives (Barros et al., 2012).

A natural approach to evolving decision trees is to represent them, indeed, as trees where the nodes
specify a comparison of a particular feature with a constant value, or a label if the node is a leaf (Aitkenhead,
2008). Fitness can then consist of accuracy in the training set, but also include complexity of the tree, such as
depth and balance. Such approaches achieve competitive performance e.g. in the UCI benchmarks, especially
in tasks that are prone to overfitting (Jankowski and Jackowski, 2014).

One way to improve generalization with decision trees is to form ensembles of them, including methods
such as random forests, where different trees are trained with different parts of the dataset (Breiman, 2001).

6

Evolutionary optimization can be applied to such ensembles as well: The nodes of the tree (represented
e.g. as feature+value pairs) can be concatenated into a vector, and multiple such vectors representing the
entire ensemble can then be used as an individual in the population. The resulting evolutionary ensembles
can outperform e.g. the standard random forests and AdaBoost methods of forming decision tree ensembles
(Dolotov and Zolotykh, 2020).

Thus, evolutionary optimization provides a potentially powerful way to overcome some of the shortcom-
ings of decision trees, thus having a large impact in domains with few examples, meaningful features, and the
need for transparent decision-making.

3.2 Learning classifier systems

The two classic evolutionary machine learning approaches, learning classifier systems (LCS) and genetic
programming (GP), can be applied to supervised learning tasks as well. They may perform well on specific
domains especially when there is too little data to take advantage of deep learning. However, like decision
trees, their solution structure is transparent and they can thus be used to construct explainable solutions.

LCS has a long history of development, and includes many variations (Butz et al., 2008; De Jong, 1988;
Holland, 1986; Urbanowicz and Moore, 2009). The approach was originally developed for reinforcement
learning problems, and a more thorough overview of it will be given in that context in Chapter 4. Often a
distinction is made between the Michigan-style LCS, where the population consists of individual classifiers
and the solution of the entire population, and Pittsburgh-style LCS, where the population consists of sets of
classifiers and the solution is the best such set. Pittsburgh-style LCS is often referred to as ruleset evolution,
and will be discussed in Section 3.4 below.

In Michigan-style LCS, the population consists of individual IF-THEN rules whose antecedents specify
feature values (0, 1, don’t care) in the environment, and consequence is a binary classification (0, 1). In
a supervised setting, the rules that match an input example are assigned fitness based on whether their
classification is correct or not. The fitness is accumulated over the entire training set, and fitness then used as
the basis for parent selection. Offspring rules are generated through crossover and mutation as usual in a
genetic algorithm. The population can be initialized to match training examples, and it is grown incrementally,
which makes learning and performance easier to understand.

For instance, LCS methods of supervised learning have been developed for for data mining in noisy,
complex problems such as those in bioinformatics Urbanowicz et al. (2014). Expert knowledge can be
encoded as probability weights and attribute tracking, guiding search towards more likely solutions. Applied
to a large number of single-nucleotide polymorphism datasets, the approach proved to be effect across a
range of epistasis and heterogeneity.

The final set of LCS rules is transparent, although it can grow very large and difficult to interpret. Methods
for compacting and filtering it have been developed to improve interpretability. However, Pittsburgh-style
rule evolution often results in smaller and more interpretable rule sets, as will be discussed in Section 3.4
below.

3.3 Genetic Programming

Along the same lines, GP is primarily a method for reinforcement learning domains, and will be reviewed in
detail in that context in Chapter 14. The main idea in GP is to evolve programs, usually represented by trees
of elementary operations Langdon et al. (2008). This idea is very general, and also applies to the supervised
learning context. The program can represent a function that transfers inputs to outputs. Those inputs and

7

outputs can originate from a supervised dataset, and fitness for a program measured based on how often the
output labels are correct. GP can thus evolve programs that perform well in the supervised task.

The idea is that domain knowledge about the features and operations can be encoded in the search space
of the program. While in deep learning approaches, such knowledge is usually extract from the examples,
GP only needs to find how to use it. Therefore, it is possible to learn from much fewer examples. Also the
programs are transparent, and therefore it is possible to explain how the system arrives at an answer.

For instance, in the EDLGP system (evolutionary deep learning GP; Bi et al., 2022), GP was used to
classify images in standard object datasets CIFAR-10, SVHN, FashionMNIST, and two face image datasets.
Starting from images as input, the programs consisted of several layers of processing, including image
filtering, feature extraction, concatenation, and classification. At each level, a number of operators were
provided as elements, and the goal was to find a tree that utilizes these operators at the appropriate levels most
effectively. Thus, much knowledge about image processing was provided to the search, making it possible to
construct effective functions with only a few training examples. Indeed, the best evolved trees performed
much better than standard deep learning approaches such as CNN and ResNet when only one to eight training
examples were available for each class; when 10-128 were available, they two approaches were roughly
comparable.

Moreover, the resulting trees are transparent, taking advantage of operations that make sense in the
domain (Figure 4. Thus, the example demonstrates once again that evolutionary supervised learning makes
sense in low-data environments in general, and also provides a level of explainability that is missing from the
standard deep learning approaches.

3.4 Rulesets

Compact neural networks, decision trees, classifier populations, and programs may be transparent, but the
most natural and clear form of explainability is in terms of rules. Indeed, AI has a rich tradition of rule-based
systems Hayes-Roth (1985). Within their scope, they provide a rigorous inference mechanism based on logic.
Importantly, they also provide explainability in that the rules specify exactly what knowledge is used to arrive
at a decision, and how the decision is made. In other words, they provide precisely what is missing from
current neural-network-based AI.

On the other hand, rule-based systems are usually constructed by hand, to encode knowledge of human
experts, instead of learning such knowledge from supervised datasets. Rule-based systems are thus an
important opportunity for evolutionary machine learning. Whereas rules cannot be learned through gradient
descent, they can be learned through evolution.

First, rules are represented in a structure that can be evolved with e.g. crossover and mutation operators.
For instance, an individual in a population can consist of a set of rules, each with a left-hand side that consists
of logical clauses and/or arithmetic expressions based on domain features, and a right-hand side that specifies
a classification or prediction (Shahrzad et al., 2022; Srinivasan and Ramakrishnan, 2011). Then, the number
of rules, their order, the number of features and the features themselves, the logical and arithmetic operations
between them, and coefficients are evolved, as are the actions and their coefficients on the right-hand side.
Furthermore, there can be probabilities or confidence values associated with each rule, and ways of combining
outputs of multiple rules can be evolved as well.

In other words, rule-set evolution can take advantage of existing representations in Turing-complete
rule-based systems. As usual in supervised learning, the fitness comes from loss, or accuracy, across the
dataset. Instead of coding the rule-based system by hand, the entire system can then be evolved. The result,
in principle, is explainable machine learning.

8

Figure 4: An image classification tree discovered by GP. The tree was evolved with a training set of 80
images per class in CIFAR-10, reaching accuracy of 52.26%, which is better than deep learning approaches Bi
et al. (2022). The gray nodes at the bottom indicate input channels; green nodes perform filtering operations;
yellow nodes extract features; purple nodes form combinations of features; red modes make classification
decisions. taking advantage of image processing knowledge given in terms of layers and elements, the
operations are chosen and the tree structure formed through GP. It results in effective classification even with
very few examples, and the classification decisions are transparent. (Figure from Bi et al., 2022)

This general approach has already been demonstrated in several decision-making tasks, including stock
trading, game playing, robotic control, and diabetes treatment recommendation (Shahrzad et al., 2020,
2022). However, it has also been applied to the supervised task of blood-pressure prediction in intensive
care (Hemberg et al., 2014; Shahrzad et al., 2022, Figure 5;). Based on a time series of blood-pressure
measurements, that task was to predict whether the patient will go into a septic shock in the next 30 minutes,
while there is still time to prevent it. Indeed, the evolved rulesets achieved an accuracy of 0.895 risk-weighted
error on the unseen set, with a true positive rate of 0.96 and a false positive rate of 0.39 (Figure 5). Most
importantly, the rules were evaluated by emergency-room physicians who found them meaningful. Without
such explicit rules, it would be very hard to deploy the prediction system. With rules, human experts can
check the AI’s reasoning and decide whether to trust it, thus making the AI helpful as a first indicator of
potential problems. Evolution of rulesets in this supervised task makes it possible.

4 Evolutionary Metalearning

The idea of metalearning is to enhance the general setup of the supervised learning system through a separate
learning process. The two systems thus work synergetically; for instance, the fitness of an evolved neural
network design is based on the performance of supervised training of that network. Metalearning is useful,
and even necessary, because modern learning systems have become too large and complex for humans to
optimize (Elsken et al., 2019; Hoos, 2012; Liang and Miikkulainen, 2015; Sinha et al., 2014). There are

9

1.(Mean[4] < 72.75mmHg) & (Kurtosis[3] < 4.09) −→Low

2.(Skew[10] > 2.01) & (Mean[8] < 88.92mmHg) & (Skew[4] < 0.15) −→Normal

3.(Mean[0] < 72.75mmHg) −→Low

4.(Mean[10] < 73.10mmHg) −→Low

5.(Mean[1] < 121.96mmHg) & (Mean[4] > 88.92mmHg) & (Mean[1] > 73.10mmHg) −→High

6.(Mean[0] < 97.53mmHg) −→Normal

7.(Mean[0] < 97.53mmHg) & (Kurtosis[0] > 12.71) −→Normal

8.(Mean[4] < 72.75mmHg) & (Kurtosis[7] > 4.03) −→Low

9.(Mean[4] > 121.96mmHg) & (Kurtosis[5] > 12.71) & (Kurtosis[3] > 1.00) −→Normal

10.(Std[0] < 10.76) −→High

11.(Kurtosis[0] > 1.00) −→High

12.(Mean[0] < 72.75mmHg) & (Std[4] > 0.01) −→Low

13.(Kurtosis[0] < 4.09) & Skew[3] > 2.01) −→Normal

14.(Skew[9] > 0.06) −→High

15.(Skew[0] < 1.95) −→High

16.(Mean[0] < 72.75mmHg) & (Mean[5] < 52.12mmHg) −→Low

17. Default −→Normal

Figure 5: A transparent and explainable rule set evolved to predict blood pressure. EVOTER discovered
sets of features at specific time points to provide a useful signal for prediction. For instance, Std[4] specifies
the standard deviation of the aggregated mean arterial pressure (MAP) over four minutes earlier. The evolved
rules predict sepsis within 30 mins with a 0.895 risk-weighted error on the unseen set, with a true positive
rate of 0.96 and a false positive rate of 0.394. Most importantly, the rules are interpretable and meaningful to
experts, which makes it much easier to deploy in practice compared to e.g. black-box neural network models.
(Figure from Shahrzad et al., 2022)

many dimensions of design, such as network topology, components, modularity, size, activation function,
loss function, learning rate and other learning parameters, data augmentation, and data selection. These
dimensions often interact nonlinearly, making it very hard to find the best configurations.

There are many approaches to metalearning, including gradient-based, reinforcement learning, and
Bayesian optimization methods (Elsken et al., 2019; Schaul and Schmidhuber, 2010). They can be fast and
powerful especially within limited search spaces. However, the evolutionary approach is most creative and
versatile (Liang et al., 2019; Liu et al., 2021a; Miikkulainen et al., 2021). It can be used to optimize many of
the design aspects mentioned above, including those that focus on optimizing discrete configurations that are
less natural for the other methods. It can also be used to achieve multiple goals: It can be harnessed to improve
state-of-the-art performance, but also to achieve good performance with little expertise, fit the architecture to
hardware constraints, take advantage of small datasets, improve regularization, find general design principles
as well as customizations to specific problems. There is also an incipient and future opportunity to find
synergies between multiple aspects of optimization and learning.

This section reviews the various aspects of evolutionary metalearning. Interestingly, many of the tech-
niques originally developed for evolving entire networks (e.g. those in Section 2.1) have a new instantiation
as metalearning techniques, evolving network architectures synergetically with learning. In addition, new
techniques have been developed as well, especially for other aspects of learning system design.

10

4.1 Neural Architecture Search

The most well-studied aspect of metalearning is Neural Architecture Search (NAS), where the network wiring,
including potentially overall topology, types of components, modular structure and modules themselves, and
general hyperparameters are optimized to maximize performance and other metrics (Elsken et al., 2019; Liu
et al., 2021a). NAS in general is a productive area in that many approaches have been developed and they
work well. However, even random search works well, suggesting that the success has less to do with the
methods so far but rather with the fact that architectures matter and many good designs are possible. It also
suggests that further improvements are still likely in this area—there is no one dominant approach or solution.

One of the early and most versatile approaches is CoDeepNEAT (Liang et al., 2019; Miikkulainen
et al., 2023). This approach builds on several aspects of techniques developed earlier for evolving complete
networks. In SANE, ESP, and CoSYNE, partial solutions such as neurons and connections were evolved in
separate subpopulations that were then combined into full solutions, i.e. complete neural networks, with the
global structure specified e.g. in terms of a network blueprint that was also evolved (Gomez and Miikkulainen,
1997; Gomez et al., 2008; Moriarty and Miikkulainen, 1997). Similarly, CoDeepNEAT co-evolves multiple
populations of modules and a population of blueprints that specifies which modules are used and how they
are connected into a full network (Figure 6a). Modules are randomly selected from the specified module
population to fill in locations in the blueprint. Each blueprint is instantiated in this way many times, evaluating
how well the design performs with the current set of blueprints. Each module participates in instantiations of
many blueprints (and inherits the fitness of the entire instantiation each time), thus evaluating how well the
module works in general with other modules. The main idea of CoDeepNEAT is thus to take advantage of
(and scale up with) modular structure, similarly to many current deep learning designs such as the inception
network and the residual network (He et al., 2016; Szegedy et al., 2015).

The modules and the blueprints are evolved using NEAT (Section 2.1), again originally designed to
evolve complete networks and adapted in CoDeepNEAT to evolving network structure. NEAT starts with a
population of simple structures connecting inputs straight to outputs, and gradually adds more modules in
the middle, as well as parallel and recurrent pathways between them. It thus prefers simple solutions but
complexifies the module and blueprint structures over time as necessary. It can in principle design rather
complex and general network topologies. However, while NEAT can be used to create entire architectures
directly, in CoDeepNEAT it is embedded into the general framework of module and blueprint evolution; it is
thus possible to scale up through repetition that would not arise from NEAT naturally.

The power of CoDeepNEAT was originally demonstrated in the task of image captioning, a domain where
a competition had been run for several years on a known dataset (Miikkulainen et al., 2023). The best human
design at that point, the Show&Tell network (Vinyals et al., 2015), was used to define the search space; that
is, CoDeepNEAT was set to find good architectures using the same elements as in the Show&Tell network.
Remarkably, CoDeepNEAT was able to improve the performance further by 15%, thus demonstrating the
power of metalearning over best human solutions (Miikkulainen et al., 2023). Interestingly, the best networks
utilized a principle different from human-designed networks: They included multiple parallel paths, possibly
encoding different hypotheses brought together in the end (Figure 6b). In this manner, the large search space
utilized by CoDeepNEAT may make it possible to discover new principles of good performance.

Similar CoDeepNEAT evolution from a generic starting point has since then been used to achieve a
state-of-the-art in text classification (Wikidetox; Liang et al., 2019) and image classification (Chest X-rays;
Liang et al., 2019). The experiments also demonstrated that with very little computational cost it is possible
to achieve performance that exceeds standard architectures, making it possible to quickly and effectively
deploy deep learning to new domains. CoDeepNEAT has since then been extended with mechanisms for
multiobjective optimization, demonstrating that the size of the network can be minimized at the same time

11

(a) (b)

Figure 6: Discovering Complex Neural Architectures through Coevolution of Modules and Blueprints.
(a) In CoDeepNEAT (Miikkulainen et al., 2023), the blueprints represent the high-level organization of the
network and modules fill in its details. The blueprint and module subpopulations are evolved simultaneously
based on how well the entire assembled network performs in the task. This principle was originally developed
for evolving entire networks (Gomez and Miikkulainen, 1997; Moriarty and Miikkulainen, 1997), but it
applies in neural architecture search for deep learning as well. (b) The overall structure of a network evolved
for the image captioning task; the rectangles represent layers, with hyperparameters specified inside each
rectangle. One module consisting of two LSTM layers merged by a sum is repeated three times in the
middle of the network. The approach allows discovery of a wide range of network structures. They may take
advantage of principles different from those engineered by humans, such as multiple parallel paths brought
together in the end in this network. (Figures from Miikkulainen et al., 2023)

as its performance. Indeed, size can sometimes be minimized to 1/12 with only a small (0.38%) cost in
performance (Liang et al., 2019). Another useful extension is to multitask learning by incorporating task
routing, i.e. coevolution of task-specific topologies instead of a single blueprint, all constructed from the same
module subpopulations (Liang et al., 2018). In multitask learning, it is possible to learn accurate performance
even with small datasets. Simultaneous learning of multiple datasets utilizes synergies between them,
resulting in performance that exceeds learning in each task alone. Multitask evolution finds architectures
that best support such synergies. The approach achieved state-of-the-art in e.g. multialphabet character
recognition (Omniglot; Liang et al., 2018), as well as multiattribute face classification (CelebA; Meyerson
and Miikkulainen, 2018). These extensions again make it possible to apply deep learning to domains where
hardware or data is limited, as it often is in real-world applications.

An important question about evolutionary NAS, and about metalearning in general, is whether it really
makes a difference, i.e. results in architectures that advance the state of the art. Such an argument is indeed
made below in Section 4.2.5 wrt. synergies of different aspects of metalearning. However, perhaps a most
convincing case wrt. NAS is the AmoabaNet (Real et al., 2019). At its time, it improved the state-of-the-art
in the ImageNet domain, which had been the focus of deep learning research for several years.

There were three innovations that made this result possible. First, search was limited to a NASNet search
space, i.e. networks with a fixed outer structure consisting of a stack of inception-like modules (Figure 7a).

12

(a) (b)

Figure 7: Evolutionary Discovery in the NASNet Search Space Compared RL and Random Search. (a)
The AmoebaNet method (Real et al., 2019) focuses evolution to a particular stacked architecture of inception-
like normal and reduction modules (cells); these networks are then scaled to larger sizes algorithmically.
AmoebaNet also promotes regularization by removing the oldest individuals in the population. (b) As a
result, it discovers architectures that are more accurate than those discovered through random search and RL,
reaching state-of-the-art accuracy in standard benchmarks like ImageNet. (Figures from Real et al., 2019)

There were two different module architectures, normal and reduction; they alternate in the stack, and are
connected directly and through skip connections. The architecture of the modules is evolved, and consists of
five levels of convolution and pooling operations. The idea is that NASNet represents a space of powerful
image classifiers that can be searched efficiently. Second, a mechanism was devised that allowed scaling the
architectures to much larger numbers of parameters, by scaling the size of the stack and the number of filters
in the convolution operators. The idea is to discover good modules first and then increase performance by
scaling up. Third, the evolutionary process was modified to favor younger genotypes, by removing those
individuals that were evaluated the earliest from the population at each tournament selection. The idea is to
allow evolution to explore more instead of focusing on a small number of genotypes early on. Each of these
ideas is useful in general in evolutionary ML, not just as part of the AmoebaNet system.

Indeed, AmoebaNet’s accuracy was the state of the art in the ImageNet benchmark at the time, which
is remarkable given how much effort the entire AI community had spent on this benchmark. Experiments
also demonstrated that evolutionary search in NASNet was more powerful than reinforcement learning and
random search in CIFAR-10, resulting in faster learning, more accurate final architectures, and ones with
lower computational cost (Figure 7b). It also demonstrates the value of focusing the search space intelligently
so that good solutions are in that space, yet it is not too large to find them.

Evolutionary NAS is rapidly becoming a field of its own, with several new approaches proposed recently.
They include multiobjective and surrogate-based approaches (Lu et al., 2020), Cartesian genetic programming
(Suganuma et al., 2020; Wu et al., 2021), variable-length encodings and smart initialization (Sun et al.,
2020a,b), and LSTM design (Rawal and Miikkulainen, 2020), to name a few; see Chapter X for a more
detailed review. The work is expanding from convolutional networks to transformers and diffusion networks,
and from visual and language domains to tabular data. An important direction is also to optimize design
aspects other than the architecture, as will be reviewed next.

13

4.2 Beyond Architecture Search

Besides the architecture, there are several other aspects of machine learning system design that need to
be configured properly for the system to perform well. Those include learning hyperparameters (such as
the learning rate), activation functions, loss functions, data sampling and augmentation, and the methods
themselves. Approaches similar to those used in NAS can be applied to them; however, the evolutionary
approach has an advantage in that it is the most versatile: It can be applied to graphs, vectors of continuous
and discrete parameters, and configuration choices. This ability is particularly useful as new architectures are
developed. For instance, at this writing, work has barely begun on optimizing designs of transformer (Vaswani
et al., 2017) or diffusion (Sohl-Dickstein et al., 2015) architectures. They have elements such as attention
modules, spatial embeddings, and noise transformations that are different from prior architectures, yet may
be parameterized and evolution applied to optimize their implementation. Most importantly, evolution can be
used to optimize many different aspects of the design at the same time, discovering and taking advantage of
synergies between them. Several such approaches are reviewed in this section.

4.2.1 Loss functions

Perhaps the most fundamental is the design of a good loss function. The mean-squared-error (MSE) loss has
been used for a long time, and more recently the cross-entropy (CE) loss has become popular, especially in
classification tasks. Both of those assign minimal loss to outputs that are close to correct, and superlinearly
larger losses to outputs further away from correct values. They make sense intuitively and work reliably, so
much so that alternatives are not usually even considered.

However, it turns out that it is possible to improve upon them, in a surprising way that would have
been difficult to discover if evolution had not done it for us (Gonzalez and Miikkulainen, 2020, 2021b).
If outputs that are extremely close to correct are penalized with a larger loss, the system learns to avoid
such extreme outputs—which minimizes overfitting (Figure 8a). Such loss functions, called Baikal loss for
their shape, lead to automatic regularization. Regularization in turn leads to more accurate performance on
unseen examples, especially in domains where the amount of available data is limited, as is the case in many
real-world applications.

Baikal loss was originally discovered with a classic genetic programming approach where the function
was represented as a tree of mathematical operations (Gonzalez and Miikkulainen, 2020). The structure of
the tree was evolved with genetic algorithms, and the coefficients in the nodes with CMA-ES (Hansen and
Ostermeier, 2001). This approach is general and creative in that it can be used to explore a large search
space of diverse functions. However, many of those functions do not work well and often are not even stable.
In the follow-up TaylorGLO method (Gonzalez and Miikkulainen, 2021b), the functions were represented
instead as third-order Taylor polynomials. Such functions are continuous and can be directly optimized with
CMA-ES, making the search more effective.

Regularization in general is an important aspect of neural network design, there are many techniques
available, such as dropout, weight decay, and label smoothing (Hanson and Pratt, 1988; Srivastava et al.,
2014; Szegedy et al., 2016), but how they work is not well understood. Loss-function optimization, however,
can be understood theoretically, and thus provides a starting point to understanding regularization in general
(Gonzalez and Miikkulainen, 2021a). It can be described as a balance of two processes, one a pull toward
the training targets, and another a push away from overfitting. The theory leads to a practical condition for
guiding the search toward trainable functions.

Note that Baikal loss is a general principle; evolutionary optimization was crucial in discovering it but it
can now be used on its own in deep learning. It is still possible to customize it for each task and architecture,

14

(a) (b)

Figure 8: Regularization and Robustness with Evolved Loss Functions. (a) The standard loss function,
such as Log Loss (or Cross-Entropy) has a high loss for outputs that are far from correct (1.0 in this case)
and a low loss otherwise. In contrast, evolutionary optimization of loss functions through GLO/TaylorGLO
(Gonzalez and Miikkulainen, 2020, 2021b) discovered a new principle: When the output is very close to the
correct one, a high loss is incurred. This principle, termed Baikal loss for its shape, discourages overfitting,
thus regularizing the network automatically, leading to better generalization. Such a loss is effective but
counterintuitive, and thus unlikely to be discovered by human designers. (b) The Baikal loss also makes the
network performance more robust. This effect can be quantified by perturbing the network weights. With
Baikal loss, the network’s performance is less affected than with Cross-Entropy loss. This effect can be further
magnified by making robustness against adversarial inputs an explicit second objective in evolution. Thus,
loss-function optimization can be used to improve not just regularization, but robustness as well. (Figures
from Gonzalez and Miikkulainen, 2020, 2021a)

and even small modifications to the standard Baikal shape may make a difference. Optimization may also
have a significant effect on various learning challenges, for instance when there is not much training data
(Gonzalez et al., 2019), or when the labels are particularly noisy (Gao et al., 2021). It may also be possible
to modify the loss function during the course of learning, for instance by emphasizing regularization in the
beginning and precision towards the end (similarly to activation functions; Section 4.2.2).

It turns out that loss functions that regularize also make networks more robust, and this effect can be
further enhanced by including an explicit robustness goal in evolution (Figure 8b). One way to create such
a goal is to evaluate performance separately wrt. adversarial examples. This result in turn suggests that
loss-function optimization could be an effective approach to creating machine learning systems that are robust
against adversarial attacks.

Loss-function optimization can also play a major role in systems where multiple loss functions interact,
such as Generative Adversarial Networks (GANs; (Gonzalez et al., 2023)). GANs include three different
losses: discriminative loss for real examples and for fake examples, and the generative loss (for fake examples).
It is difficult to get them right, and many proposals exist, including those in minimax, nonsaturating,
Wasserstein, and least-squares GANs (Arjovsky et al., 2017; Goodfellow et al., 2014; Mao et al., 2017).
Training often fails, resulting e.g. in mode collapse. However, the three losses can be evolved simultaneously,
using performance and reliability as fitness. In one such experiment on generating building facade images
given the overall design as a condition, the TaylorGLO approach was found to result in better structural
similarity and perceptual distance than the Wasserstein loss (Gonzalez et al., 2023). Although this result

15

is preliminary, it suggests that evolutionary loss-function optimization may make more complex learning
systems possible in the future.

4.2.2 Activation functions

Early on in the 1980s and 1990s, sigmoids (and tanh) were used almost exclusively as activation functions for
neural networks. They had the intuitively the right behavior as neural models, limiting activation between the
minimum and maximum values, a simple derivative that made backpropagation convenient, and a theorem
suggesting that universal computing could be based on such networks (Cybenko, 1989; Hornik et al., 1989).
There were indications, however, that other activation functions might work better in many cases. Gaussians
achieved universal computing with one less layer, and were found powerful in radial basis function networks
(Park and Sandberg, 1991). Ridge activations were also found to provide similar capabilities (Light, 1992).

However, with the advent of deep learning, an important discovery was made: Activation function
actually made a big difference wrt. vanishing gradients. In particular, rectified linear units (ReLUs), turned
out important in scaling up deep learning networks (Nair and Hinton, 2010). The linearly increasing region
does not saturate activation or gradients, resulting in less signal loss. Moreover, it turned out that in many
cases ReLU could be improved by adding a small differentiable dip at the boundary between the two regions,
in a function called Swish (Ramachandran et al., 2017). This result suggested that there may be an opportunity
to optimize activation functions, in general and for specific architectures and tasks.

Like with loss functions, there is a straightforward opportunity in evolving functions through genetic
programming (Bingham et al., 2020). Similarly to loss functions, such an approach can be creative, but also
results in many functions that make the network unstable. A more practical approach is to limit the search
space to e.g. computation graphs of two levels, with a focused set of operators, that are more likely to result
in useful functions. This approach was taken e.g. in the Pangaea system (Bingham and Miikkulainen, 2022).
Given a list of 27 unary and seven binary operators, two basic two-level computation graph structures, and
four mutation operators, evolution can search a space of over ten trillion activation functions.

However, finding an effective function is only part of the challenge. The function also needs to be
parameterized so that it performs as well as possible. While coefficients multiplying each operator can be
evolved together with the structure, it turns out that such fine tuning can be done more efficiently through
gradient descent. In other words, in Pangaea evolution and gradient descent work synergetically: evolution
discovers the general structure of the function, and gradient descent finds its optimal instantiation.

The method is powerful in two ways: it finds general functions that perform better than previous functions
(such as ReLU, SeLU, Swish, etc.) across architectures (such as All-CNN, Wide ResNet, Resnet, and
Preactivation Resnet) and tasks (such as CIFAR-10, CIFAR-100). However, it is most powerful in discovering
activation functions that are specialized to architecture and task, apparently taking advantage of the special
requirements in each such context.

Furthermore, performance can be further improved by allowing different functions at different parts of the
network, and at different times throughout training (Figure 9). The optimal designs change continuously over
time and space. Different activation functions are useful early in training when the network learns rapidly and
late in training when fine-tuning is needed; similarly, more nonlinear functions are discovered for later layers,
possibly reflecting the need to form a regularized embedding early, and make classification decisions later.

The Pangaea results suggest an intriguing duality: While neural network learning is mostly based on
adapting a large number of parameters (i.e. weights), perhaps a similar effect might be achieved by adapting
the activation functions over space and time? Perhaps the two mechanisms could be used synergetically?
Evolution of the activation function structure provides the foundation for this approach, which still needs to

16

Figure 9: Activation Functions Discovered over Space and Time. Pangaea (Bingham and Miikkulainen,
2022) combines evolution of function structure synergetically with gradient descent of its parameters. It is
possible to discover general functions, but the approach is most powerful in customizing them to a particular
architecture and task. Moreover, the functions change systematically over learning time as well as through
different depths of layers, presumably starting with coarse learning and regularization and transforming into
fine-tuning and classification. These results suggest a possible duality with weight learning, and a possible
synergy for the future. (Figure from Bingham and Miikkulainen, 2022)

be developed fully.

4.2.3 Data use and augmentation

Another important opportunity for evolutionary optimization of supervised learning systems is to optimize
the training data. For instance, it may be possible to form embeddings of the training samples through
an autoencoder, and then form a strategy for utilizing different kinds of samples optimally through time
(Gonzalez et al., 2019). In this manner, evolution could discover ways for balancing an imbalanced dataset or
designing curricular learning from simple to more complex examples. Especially in domains where not a lot
of labeled samples are available, such techniques could result in significant improvements. It may also be
possible to extend the methods to utilize multiple datasets optimally over time in a multitask setting.

Another possibility is to evolve methods for augmenting the available data automatically through various
transformations. Different datasets may benefit from different transformations, and it is not always obvious
ahead of time how they should be designed. For instance, in an application to develop models for estimating
the age of a person from an image of their face, evolution was used to decide vertical and horizontal shift
and cutout, as well as a direction of flip operations, angle of rotation, degree of zoom, and extent of shear
(Miikkulainen et al., 2021). Unexpectedly, it chose to do vertical flips only—which made little sense for
faces, until it was found that the input images had been rotated 90 degrees! It also discovered a combination

17

of shift operations that allowed it to obfuscate the forehead and chin, which would otherwise be easy areas
for the model to overfit.

A particularly interesting use for evolved data augmentation is to optimize not only the accuracy of the
resulting models but also to mitigate bias and fairness issues with the data. As long as these dimensions can be
measured (Sharma et al., 2020), they can be made part of the fitness, or separate objectives in a multiobjective
setting. Operations then need to be designed to increase variance across variables that might otherwise
lead to bias through overfitting—for instance gender, ethnicity, and socioeconomic status, depending on
the application. While evolutionary data augmentation is still new, this area seems like a differentiated and
compelling opportunity for it.

4.2.4 Learning methods

An interesting extension of NAS is to evolve the learning system not from high-level elements, but from
the basic algorithmic building blocks (mathematical operations, data management, and ways to combine
them)—in other words, by evolving code for supervised machine learning. In this manner, evolution can be
more creative in discovering good methods, with fewer biases from the human experimenters.

The AutoML-Zero system (Real et al., 2020) is a step towards this goal. Given an address space for
scalars, vectors, and matrices of floats, it evolves setup, predict, and learn methods composed of over 50 basic
mathematical operations. Evolution is implemented as a linear GP, and consists of inserting and removing
instructions and randomizing instructions and addresses. Evaluation consists of computing predictions over
unseen examples.

Starting from empty programs, AutoML-Zero first discovered linear models, followed by gradient descent,
and eventually several extensions known in the literature, such as noisy inputs, gradient normalization, and
multiplicative interactions (Figure 10). When given small datasets, it discovers regularization methods similar
to dropout; when given few training steps, it discovers learning-rate decay.

Thus, the preliminary experiments with AutoML-Zero suggest that evolutionary search can be a powerful
tool in discovering entire learning algorithms. As in many metalearning approaches, the main power may be
in customizing these methods to particular domains and constraints. A crucial aspect will be to guide the
evolution within the enormous search space toward meaningful solutions, without hampering its ability to
create, again a challenge shared with most of metalearning.

4.2.5 Synergies

Perhaps the most important future direction in evolutionary metalearning is to discover and utilize synergies
between the different aspects of the learning system design. For instance, the best performance was reached by
optimization activation functions for the specific architecture; it might be possible to optimize the architecture
simultaneously to emphasize this effect.

Simply running evolution on all these design aspects simultaneously is unlikely to work; the search space
would be prohibitively large. Similarly, adding more outer loops to the existing process (where supervised
learning is the inner loop and metalearning is the outer loop) is likely prohibitive as well. However, it might
be possible to alternate evolution of different aspects. Better yet, techniques from bilevel (or multilevel)
optimization could be useful—the idea is to avoid full inner-outer loop structure, but instead use e.g. surrogate
models to evaluate outer loop innovations (Liang and Miikkulainen, 2015; Sinha et al., 2014).

A practical approach is to simply add constraints, and search in a smaller space. A first such step was
already taken in the EPBT system (Liang et al., 2021), which combines hyperparameter tuning, loss-function

18

Figure 10: Evolutionary Discovery of Learning Methods. In AutoML-Zero (Real et al., 2020), sequences
of instructions for setup, prediction, and learning are evolved through mutation-based regularized search.
AutoML-Zero first discovered simple methods such as linear models, then several known extensions such
as ReLU and gradient normalization, and eventually more sophisticated techniques such as multiplicative
interactions. The approach could potentially be useful in particular in customizing learning methods to
different domains and constraints. (Figure from Real et al., 2020)

optimization, and population-based training (PBT) into a single loop. That is, hyperparameters and loss
functions are evolved at the same time as the networks are being trained. Hyperparameter tuning is limited
to those that do not change the structure of the networks (e.g. learning rate schedules) so that they can be
continuously trained, even when the hyperparameters change. Similarly, loss-function optimization is limited
to TaylorGLO coefficients (Liang et al., 2021) that can be changed while training is going on. Even so, the
simultaneous evolution and learning was deceptive, and needed to be augmented with two mechanisms:
quality-diversity heuristic for managing the population and knowledge distillation to prevent overfitting. The
resulting method worked well on optimizing ResNet and WideResnet architectures in CIFAR-10 and SVHN,
but also illustrates the challenges in taking advantage of synergies of metalearning methods.

Similarly, promising results were obtained in an experiment that compared human design with evolu-
tionary metalearning (Miikkulainen et al., 2021). Using the same datasets and initial model architectures,
similar computational resources, and similar development time, a team of data scientists and an evolutionary
metalearning approach developed models for age estimation in facial images (Figure 11). The evolutionary
metalearning approach, LEAF-ENN, included optimization of loss functions (limited to linear combinations
of MSE and CE), learning hyperparameters, architecture hyperparameters, and data augmentation methods.
Evolution discovered several useful principles that the data scientists were not aware of: focusing data
augmentation to regions that mattered most, and utilizing flips only horizontally across the face; utilizing
different loss functions at different times during learning; relying mostly on the output level blocks of the base
models. With both datasets, the eventual accuracy of the metalearned models was significantly better than

19

Figure 11: Utilizing Metalearning Synergies to Beat Human Designers. In two datasets (D0 and D1) for
age estimation from facial images, LEAF-ENN evolutionary metalearning (Miikkulainen et al., 2021) was
able to discover models that performed better than those simultaneously designed by human experts. The
humans optimized the ResNet-50 architecture for D0 and EfficientNet-B8 for D1. The evolutionary runs
progressed in stages: In D0, ResNet-50 (S0) was expanded to Densenet 169 (S1); in D1, DenseNet-169 (S0)
was expanded to DenseNet-201 (S1) and trained longer (S2), then expanded to EfficientNet-B6 (S3), and
ensembling (S4). At the same time, evolution optimized learning and architecture hyperparameters, data-
augmentation methods, and combinations of loss functions. The approach discovers and utilizes synergies
between design aspects that are difficult for humans to utilize. The final accuracy, MSE of 2.19 years, is
better than typical human accuracy in age estimation (3-4 years). (Figure from Miikkulainen et al., 2021)

that of the models developed by the data scientists. This result demonstrates the main value of evolutionary
metalearning: it can result in models that are optimized beyond human ability to do so.

5 Conclusion

Although much of evolutionary machine learning has focused on discovering optimal designs and behavior, it
is a powerful approach to supervised learning as well. While gradient-based supervised learning (i.e. deep
learning) has benefited from massive scale-up, three opportunities for evolutionary supervised learning have
emerged as well. In particular, in domains where such a scale-up is not possible, it can be useful in two ways.
First, it can expand the scope of supervised learning to a more general set of design goals other than simply
accuracy. Second, it can be applied to solution structures that are explainable. Third, in domains where deep
learning is applicable, it can be used to optimize the design of the most complex such architectures, thus
improving upon the state of the art. Two most interesting research directions emerge: how to extend the
generality and explainability to larger domains, and how to take advantage of synergies between multiple
aspects of machine learning system design. Such work most likely requires developing a better understanding
of how the search can be guided to desired directions without limiting the creativity of the approach.

20

References

Aharonov-Barki, R., Beker, T., and Ruppin, E. (2001). Emergence of memory-driven command neurons in
evolved artificial agents. Neural Computation, 13:691–716.

Aitkenhead, M. J. (2008). A co-evolving decision tree classification method. Expert Systems with Applications,
34:19–25.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In Precup, D.,
and Teh, Y. W., editors, Proceedings of the 34th International Conference on Machine Learning, vol. 70,
214–223.

Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F., and Freitas, A. A. (2012). A survey of evolutionary
algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42:291–312.

Bi, Y., Xue, B., and Zhang, M. (2022). Genetic programming-based evolutionary deep learning for data-
efficient image classification. IEEE Transactions on Evolutionary Computation.

Bingham, G., Macke, W., and Miikkulainen, R. (2020). Evolutionary optimization of deep learning activation
functions. In Proceedings of the Genetic and Evolutionary Computation Conference, 289–296.

Bingham, G., and Miikkulainen, R. (2022). Discovering parametric activation functions. Neural Networks,
148:48–65.

Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and Regression Trees. Chapman
and Hall/CRC.

Butz, M. V., Lanzi, P. L., and Wilson, S. W. (2008). Function approximation with xcs: Hyperellipsoidal
conditions, recursive least squares, and compaction. IEEE Transactions on Evolutionary Computation,
12:355–376.

Canatar, A., Bordelon, B., and Pehlevan, C. (2021). Spectral bias and task-model alignment explain
generalization in kernel regression and infinitely wide neural networks. Nature Communications, 12:1914.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2:303–314.

Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z., Liu, H., Tang, J., and Wang, S. (2020). A comprehensive survey
on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability. arXiv:2104.05605.

De Jong, K. (1988). Learning with genetic algorithms: An overview. Machine Learning, 3:121–138.

Deb, K., and Myburgh, C. (2017). A population-based fast algorithm for a billion-dimensional resource
allocation problem with integer variables. European Journal of Operational Research, 261:460–474.

Dolotov, E., and Zolotykh, N. Y. (2020). Evolutionary algorithms for constructing an ensemble of decision
trees. arXiv:2002.00721.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of Machine
Learning Research, 20:1–21.

21

Gaier, A., and Ha, D. (2019). Weight agnostic neural networks. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems,
5364–5378.

Ganon, Z., Keinan, A., and Ruppin, E. (2003). Evolutionary network minimization: Adaptive implicit
pruning of successful agents. In Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., and Kim, J. T., editors,
Advances in Artificial Life, 319–327. Berlin, Heidelberg: Springer Berlin Heidelberg.

Gao, B., Gouk, H., and Hospedales, T. M. (2021). Searching for robustness: Loss learning for noisy
classification tasks. IEEE/CVF International Conference on Computer Vision, 6650–6659.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of complex general behavior. Adaptive
Behavior, 5:317–342.

Gomez, F., Schmidhuber, J., and Miikkulainen, R. (2008). Accelerated neural evolution through cooperatively
coevolved synapses. Journal of Machine Learning Research, 937–965.

Gonzalez, S., Kant, M., and Miikkulainen, R. (2023). Evolving gan formulations for higher quality image
synthesis. In Kozma, R., Alippi, C., Choe, Y., and Morabito, F. C., editors, Artificial Intelligence in the
Age of Neural Networks and Brain Computing (second edition). New York: Elsevier.

Gonzalez, S., Landgraf, J., and Miikkulainen, R. (2019). Faster training by selecting samples using embed-
dings. In Proceedings of the 2019 International Joint Conference on Neural Networks, 1–7.

Gonzalez, S., and Miikkulainen, R. (2020). Improved training speed, accuracy, and data utilization through
loss function optimization. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), 1–8.

Gonzalez, S., and Miikkulainen, R. (2021a). Effective regularization through loss-function metalearning.
arXiv:2010.00788.

Gonzalez, S., and Miikkulainen, R. (2021b). Optimizing loss functions through multivariate Taylor poly-
nomial parameterization. In Proceedings of the Genetic and Evolutionary Computation Conference,
305–313.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27, 2672–2680.

Hansen, N., and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9:159–195.

Hanson, S. J., and Pratt, L. Y. (1988). Comparing biases for minimal network construction with back-
propagation. In Proceedings of the 1st International Conference on Neural Information Processing
Systems, 177–185. Cambridge, MA, USA: MIT Press.

Hayes-Roth, F. (1985). Rule-based systems. Communications of the ACM, 28:921–932.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 770–778.

Hemberg, E., Veeramachaneni, K., Wanigarekara, P., Shahrzad, H., Hodjat, B., and O’Reilly, U.-M. (2014).
Learning decision lists with lagged physiological time series. In Workshop on Data Mining for Medicine
and Healthcare, 14th SIAM International Conference on Data Mining, 82–87.

22

Holland, J. (1986). Escaping brittleness: The possibilities of general purpose learning algorithms applied to
parallel rule-based systems. In Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine learning:
An artificial intelligence approach, vol. 2, 593–623. Los Altos, CA: Morgan Kaufmann.

Hoos, H. (2012). Programming by optimization. Communications of the ACM, 55:70–80.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2:359–366.

Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., and Yi, X. (2020). A survey of
safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence,
and interpretability. Computer Science Review, 37:100270.

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review.
Neural Networks, 21:642–653.

Jankowski, D., and Jackowski, K. (2014). Evolutionary algorithm for decision tree induction. In Saeed,
K., and Snášel, V., editors, Computer Information Systems and Industrial Management, 23–32. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Kashtan, N., and Alon, U. (2005). Spontaneous evolution of modularity and network motifs. Proceedings of
the National Academy of Sciences, 102:13773–13778.

Langdon, W. B., Poli, R., McPhee, N. F., and Koza, J. R. (2008). Genetic programming: An introduction and
tutorial, with a survey of techniques and applications. In Fulcher, J., and Jain, L. C., editors, Computational
Intelligence: A Compendium, 927–1028. Berlin, Heidelberg: Springer.

Liang, J., Gonzalez, S., Shahrzad, H., and Miikkulainen, R. (2021). Regularized evolutionary population-
based training. In Proceedings of the Genetic and Evolutionary Computation Conference, 323–331.

Liang, J., Meyerson, E., Hodjat, B., Fink, D., Mutch, K., and Miikkulainen, R. (2019). Evolutionary neural
AutoML for deep learning. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2019), 401–409.

Liang, J., Meyerson, E., and Miikkulainen, R. (2018). Evolutionary architecture search for deep multitask
networks. In Proceedings of the Genetic and Evolutionary Computation Conference, 466–473.

Liang, J. Z., and Miikkulainen, R. (2015). Evolutionary bilevel optimization for complex control tasks. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), 871–878.

Light, W. (1992). Ridge functions, sigmoidal functions and neural networks. In Approximation Theory VII,
158–201. Boston: Academic Press.

Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan, K. C. (2021a). A survey on evolutionary neural
architecture search. IEEE Transactions on Neural Networks and Learning Systems, 1–21.

Liu, Z., Zhang, X., Wang, S., Ma, S., and Gao, W. (2021b). Evolutionary quantization of neural networks
with mixed-precision. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2785–2789.

Lu, Z., Deb, K., Goodman, E., Banzhaf, W., and Boddeti, V. N. (2020). Nsganetv2: Evolutionary multi-
objective surrogate-assisted neural architecture search. In European Conference on Computer Vision
ECCV-2020, LNCS, vol. 12346, 35–51.

23

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. (2017). Least squares generative
adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2794–2802.

Meyerson, E., and Miikkulainen, R. (2018). Pseudo-task augmentation: From deep multitask learning to
intratask sharing—and back. In Proceedings of the 35th International Conference on Machine Learning,
739–748.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., and Hodjat, B. (2023). Evolving deep neural networks. In Morabito, C. F.,
Alippi, C., Choe, Y., and Kozma, R., editors, Artificial Intelligence in the Age of Neural Networks and
Brain Computing, 293–312. New York: Elsevier. Second edition.

Miikkulainen, R., Meyerson, E., Qiu, X., Sinha, U., Kumar, R., Hofmann, K., Yan, Y. M., Ye, M., Yang,
J., Caiazza, D., and Brown, S. M. (2021). Evaluating medical aesthetics treatments through evolved age-
estimation models. In Proceedings of the Genetic and Evolutionary Computation Conference, 1009–1017.

Montana, D. J., and Davis, L. (1989). Training feedforward neural networks using genetic algorithms. In
International Joint Conference on Artificial Intelligene, 762–767.

Moriarty, D. E., and Miikkulainen, R. (1997). Forming neural networks through efficient and adaptive
co-evolution. Evolutionary Computation, 5:373–399.

Nair, V., and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), 807–814.

Oymak, S. (2018). Learning compact neural networks with regularization. In International Conference on
Machine Learning, 3963–3972.

Papavasileiou, E., Cornelis, J., and Jansen, B. (2021). A systematic literature review of the successors of
“neuroevolution of augmenting topologies”. Evolutionary Computation, 29:1–73.

Park, J., and Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural
Computation, 3:246–257.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81–106.

Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. arXiv:1710.05941.

Rawal, A., and Miikkulainen, R. (2020). Discovering gated recurrent neural network architectures. In Iba,
H., and Noman, N., editors, Deep Neural Evolution – Deep Learning with Evolutionary Computation,
233–251. Springer.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier
architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, 4780–4789.

Real, E., Liang, C., So, D., and Le, Q. (2020). AutoML-Zero: Evolving machine learning algorithms from
scratch. In III, H. D., and Singh, A., editors, Proceedings of the 37th International Conference on Machine
Learning, 8007–8019.

Reed, R. (1993). Pruning algorithms-a survey. IEEE Transactions on Neural Networks, 4:740–747.

24

Routley, N. (2017). Visualizing the trillion-fold increase in computing power. Retrieved 11/17/2022.

Schaul, T., and Schmidhuber, J. (2010). Metalearning. Scholarpedia, 5:4650.

Schmidhuber, J. (2022). Annotated history of modern ai and deep learning. arXiv:22212.11279.

Shahrzad, H., Hodjat, B., Dolle, C., Denissov, A., Lau, S., Goodhew, D., Dyer, J., and Miikkulainen, R.
(2020). Enhanced optimization with composite objectives and novelty pulsation. In Banzhaf, W., Goodman,
E., Sheneman, L., Trujillo, L., and Worzel, B., editors, Genetic Programming Theory and Practice XVII,
275–293. New York: Springer.

Shahrzad, H., Hodjat, B., and Miikkulainen, R. (2022). EVOTER: Evolution of transparent explainable
rule-sets. arXiv:2204.10438.

Sharma, S., Henderson, J., and Ghosh, J. (2020). CERTIFAI: A common framework to provide explanations
and analyse the fairness and robustness of black-box models. In Proceedings of the AAAI/ACM Conference
on AI, Ethics, and Society, 166–172. New York, NY, USA: Association for Computing Machinery.

Shayani, H., Bentley, P., and Tyrrell, A. (2008). An fpga-based model suitable for evolution and development
of spiking neural networks. In Proceedings of the European Symposium on Artificial Neural Networks,
197–202.

Sinha, A., Malo, P., Xu, P., and Deb, K. (2014). A bilevel optimization approach to automated parameter
tuning. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), 847–854.
Vancouver, BC, Canada.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised learning
using nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference on Machine
Learning, vol. 37, 2256–2265.

Srinivasan, S., and Ramakrishnan, S. (2011). Evolutionary multi objective optimization for rule mining:
Areview. Artificial Intelligence Review, 36:205–248.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958.

Stanley, K. O. (2004). Efficient Evolution of Neural Networks Through Complexification. PhD thesis,
Department of Computer Sciences, The University of Texas at Austin.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A Hypercube-Based encoding for evolving
Large-Scale neural networks. Artificial Life, 15:185–212.

Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.
Evolutionary computation, 10:99–127.

Stanley, K. O., and Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21:63–100.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. (2017). Deep neuroevolution:
Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement
learning. arXiv:1712.06567.

Suganuma, M., Kobayashi, M., Shirakawa, S., and Nagao, T. (2020). Evolution of Deep Convolutional
Neural Networks Using Cartesian Genetic Programming. Evolutionary Computation, 28:141–163.

25

Sun, Y., Xue, B., Zhang, M., and Yen, G. G. (2020a). Evolving deep convolutional neural networks for image
classification. IEEE Transactions on Evolutionary Computation, 24:394–407.

Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Lv, J. (2020b). Automatically designing cnn architectures using
the genetic algorithm for image classification. IEEE Transactions on Cybernetics, 50:3840–3854.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture
for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2818–2826.

Urbanowicz, R., and Moore, J. (2009). Learning classifier systems: A complete introduction, review, and
roadmap. Journal of Artificial Evolution and Applications, 2009:736398.

Urbanowicz, R. J., Bertasius, G., and Moore, J. H. (2014). An extended michigan-style learning classifier
system for flexible supervised learning, classification, and data mining. In International Conference on
Parallel Problem Solving from Nature, 211–221. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, vol. 30,
6000–6010.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural image caption generator.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3156–3164.

Wu, X., Zhang, X., Jia, L., Chen, L., Liang, Y., Zhou, Y., and Wu, C. (2021). Neural architecture search
based on cartesian genetic programming coding method. arXiv:2103.07173.

26

