
Neuroevolution

Risto Miikkulainen
The University of Texas at Austin

1 Definition

Neuroevolution is a method for modifying neural network weights, topologies, or ensembles in order to
learn a specific task. Evolutionary computation is used to search for network parameters that maximize a
fitness function that measures performance in the task. Compared to other neural network learning methods,
neuroevolution is highly general, allowing learning without explicit targets, with nondifferentiable activation
functions, and with recurrent networks. It can also be combined with standard neural network learning to e.g.
model biological adaptation. Neuroevolution can also be seen as a policy search method for reinforcement-
learning problems, where it is well suited to continuous domains and to domains where the state is only
partially observable.

2 Synonyms

Evolving neural networks, genetic neural networks

3 Motivation and Background

The primary motivation for neuroevolution is to be able to train neural networks in sequential decision tasks
with sparse reinforcement information. Most neural network learning is concerned with supervised tasks,
where the desired behavior is described in terms of a corpus of input-output examples. However, many
learning tasks in the real world do not lend themselves to the supervised learning approach. For example, in
game playing, vehicle control, and robotics, the optimal actions at each point in time are not always known;
only after performing several actions it is possible to get information about how well they worked, such as
winning or losing the game. Neuroevolution makes it possible to find a neural network that optimizes such
behavior given only sparse information about how well the networks are doing, without direct information
about what exactly they should be doing.

The main benefit of neuroevolution compared to other reinforcement learning (RL) methods is that it
allows representing continuous state and action spaces and disambiguating hidden states naturally. Network
activations are continuous, and the network generalizes well between continuous values, largely avoiding
the state explosion problem that plagues many reinforcement-learning approaches. Recurrent networks can
encode memories of past states and actions, making it possible to learn in partially observable Markov
decision process (POMDP) environments that are difficult for many RL approaches.

Compared to other neural network learning methods, neuroevolution is highly general. As long as the
performance of the networks can be evaluated over time, and the behavior of the network can be modified

In Encyclopedia of Machine Learning, 2nd Edition, Sammut, C. and Webb, G. I.

(Eds.), Berlin, 2015. Springer.

Figure 1: Evolving Neural Networks. A population of genetic neural network encodings (genotypes) is first created.
At each iteration of evolution (generation), each genotype is decoded into a neural network (phenotype), which is
evaluated in the task, resulting in a fitness value for the genotype. Crossover and mutation among the genotypes with
the highest fitness is then used to generate the next generation.

through evolution, it can be applied to a wide range of network architectures, including those with non-
differentiable activation functions and recurrent and higher-order connections. While most neural learning
algorithms focus on modifying the weights only, neuroevolution can be used to optimize other aspects of
the networks as well, including activation functions and network topologies.

Third, neuroevolution allows combining evolution over a population of solutions with lifetime learning
in individual solutions: the evolved networks can each learn further through e.g. backpropagation or Heb-
bian learning. The approach is therefore well suited to understanding biological adaptation, and for building
artificial life systems.

4 Structure of the Learning System

4.1 Basic methods

In neuroevolution, a population of genetic encodings of neural networks is evolved in order to find a net-
work that solves the given task. Most neuroevolution methods follow the usual generate-and-test loop of
evolutionary algorithms (figure 1). Each encoding in the population (a genotype) is chosen in turn and
decoded into the corresponding neural network (a phenotype). This network is then employed in the task,
and its performance over time measured, obtaining a fitness value for the corresponding genotype. After all
members of the population have been evaluated in this manner, genetic operators are used to create the next
generation of the population. Those encodings with the highest fitness are mutated and crossed over with
each other, and the resulting offspring replaces the genotypes with the lowest fitness in the population. The
process therefore constitutes an intelligent parallel search towards better genotypes, and continues until a
network with a sufficiently high fitness is found.

Several methods exist for evolving neural networks depending on how the networks are encoded. The
most straightforward encoding, sometimes called conventional neuroevolution (CNE), is formed by con-
catenating the numerical values for the network weights (either binary or floating point) [7, 22, 30]. This
encoding allows evolution to optimize the weights of a fixed neural network architecture, an approach that

2

is easy to implement and is practical in many domains.

In more challenging domains, the CNE approach suffers from three problems: The method may cause
the population to converge before a solution is found, making further progress difficult (i.e. premature con-
vergence); similar networks, such as those where the order of nodes is different, may have different encod-
ings, and much effort is wasted in trying to optimize them in parallel (i.e. competing conventions); a large
number of parameters need to be optimized at once, which is difficult through evolution.

More sophisticated encodings have been devised to alleviate these problems. One approach is to run the
evolution at the level of solution components instead of full solutions. That is, instead of a population of
complete neural networks, a population of network fragments, neurons, or connection weights is evolved
[9, 17, 20]. Each individual is evaluated as part of a full network, and its fitness reflects how well it cooper-
ates with other individuals in forming a full network. Specifications for how to combine the components into
a full network can be evolved separately, or the combination can be based on designated roles for subpop-
ulations. In this manner, the complex problem of finding a solution network is broken into several smaller
subproblems; evolution is forced to maintain diverse solutions, and competing conventions and the number
of parameters is drastically reduced.

Another approach is to evolve the network topology, in addition to the weights. The idea is that topology
can have a large effect on function, and evolving appropriate topologies can achieve good performance faster
than evolving weights only [2, 7, 26, 30]. Since topologies are explicitly specified, competing conventions
are largely avoided. It is also possible to start evolution with simple solutions and gradually make them
more complex, a process that takes place in biology and is a powerful approach in machine learning in
general. Speciation according to the topology can be used to avoid premature convergence, and to protect
novel topological solutions until their weights have been sufficiently optimized.

All of the above methods map the genetic encoding directly to the corresponding neural network, i.e.
each part of the encoding corresponds to a part of the network, and vice versa. Indirect encoding, in contrast,
specifies a process through which the network is constructed, such as cell division, generation through a
grammar, or through patterns generated by another neural network [7, 10, 24, 25, 30]. Such an encoding can
be highly compact, and also take advantage of modular solutions. The same structures can be repeated with
minor modifications, as they often are in biology. It is, however, difficult to optimize solutions produced by
indirect encoding, and realizing its full potential is still future work.

The fifth approach is to evolve an ensemble of neural networks to solve the task together, instead of a
single network [15]. This approach takes advantage of the diversity in the population: different networks
learn different parts or aspects of the training data, and together the whole ensemble can perform better than
a single network. Diversity can be created through speciation and negative correlation, encouraging useful
specializations to emerge. The approach can be used to design ensembles for classification problems, but it
can also be extended to control tasks.

4.2 Extensions

The basic mechanisms of neuroevolution can be augmented in several ways, making the process more
efficient and extending it to various applications. One of the most basic ones is incremental evolution,
or shaping: Evolution is began on a simple task, and once that is mastered, the solutions are evolved further
on a more challenging task, and through a series of such transfer steps, eventually on the actual goal task
itself [9]. Shaping can be done by changing the environment, such as increasing the speed of the opponents,
or by changing the fitness function, e.g. by rewarding gradually more complex behaviors. It is often possible
to solve challenging tasks by approaching them incrementally even when they cannot be solved directly.

3

Many extensions to evolutionary computation methods apply particularly well to neuroevolution. For
instance, intelligent mutation techniques such as those employed in evolutionary strategies are effective
because the weights often have suitable correlations [11]. Networks can also be evolved through coevolution
[5, 26]. A coevolutionary arms race can be established e.g. based on complexification of network topology:
as the network becomes gradually more complex, evolution is likely to elaborate on existing behaviors
instead of replacing them. Third, behavioral diversity and novelty can be defined naturally in terms of
network behavior, leading to methods that discover novel solutions [13, 18].

On the other hand, several extensions utilize the special properties of the neural network phenotype.
For instance, neuron activation functions, initial states, and learning rules can be evolved to fit the task
[7, 22, 30]. It is possible to evolve modular network architectures e.g. as a separate mutation or through
minimizing wiring length, and thus discover how complex behavior arises from a combination of low-level
behaviors [6, 23]. Most significantly, evolution can be combined with other neural network learning methods
[7]. In such approaches, evolution usually provides the initial network, which then adapts further during its
evaluation in the task. The adaptation can take place through Hebbian learning, thereby strengthening those
existing behaviors that are invoked often during evaluation. Alternatively, supervised learning such as back-
propagation can be used, provided targets are available. Even if the optimal behaviors are not known, such
training can be useful: networks can be trained to imitate the most successful individuals in the population,
or part of the network can be trained in a related task such as predicting the next inputs, or evaluating the
utility of actions based on values obtained through Q-learning. The weight changes may be encoded back
into the genotype, implementing Lamarckian evolution; alternatively, they may affect selection through the
Baldwin effect, i.e. networks that learn well will be selected for reproduction even if the weight changes
themselves are not inherited [1, 4, 10].

There are also several ways to bias and direct the learning system using human knowledge. For instance,
human-coded rules can be encoded in partial network structures, and incorporated into the evolving networks
as structural mutations. Such knowledge can be used to implement initial behaviors in the population, or it
can serve as advice during evolution [16]. In cases where rule-based knowledge is not available, it may still
be possible to obtain examples of human behavior. Such examples can then be incorporated into evolution,
either as components of fitness, or by explicitly training the evolved solutions towards human behavior
through e.g. backpropagation [4]. Similarly, knowledge about the task and its components can be utilized in
designing effective shaping strategies. In this manner, human expertise can be used to bootstrap and guide
evolution in difficult tasks, as well as direct it towards the desired kinds of solutions.

5 Applications

Neuroevolution methods are powerful especially in continuous domains of reinforcement learning, and those
that have partially observable states. For instance in the benchmark task of balancing the inverted pendulum
without velocity information (making the problem partially observable), the advanced methods have been
shown to find solutions two orders of magnitude faster than value-function based reinforcement-learning
methods (measured by number of evaluations; [9]). They can also solve harder versions of the problem,
such as balancing two poles simultaneously.

The method is powerful enough to make many real-world applications of reinforcement learning possi-
ble. The most obvious area is adaptive, nonlinear control of physical devices. For instance, neural network
controllers have been evolved to drive mobile robots, automobiles, and even rockets [3, 8, 19, 27, 28]. The
control approach have been extended to optimize systems such as chemical processes, manufacturing sys-
tems, and computer systems. A crucial limitation with current approaches is that the controllers usually
need to be developed in simulation and transferred to the real system. Evolution is strongest as an off-line

4

learning method where it is free to explore potential solutions in parallel.

Evolution of neural networks is a natural tool for problems in artificial life. Because networks imple-
ment behaviors, it is possible to design neuroevolution experiments on how behaviors such as foraging,
pursuit and evasion, hunting and herding, collaboration, and even communication may emerge in response
to environmental pressure [19, 29]. It is possible to evolve the morphology and control together to create
agents with natural movement [3, 14], and to analyze the evolved circuits and understand how they map
to function, leading to insights into biological networks [12]. The evolutionary behavior approach is also
useful for constructing characters in artificial environments, such as games and simulators. Non-player char-
acters in current video games are usually scripted and limited; neuroevolution can be used to evolve complex
behaviors for them, and even adapt them in real time [16, 21].

6 Programs and Data

Software for the NEAT method for evolving network weights and topologies, and for the ESP and CoSyNE
methods for evolving neurons and weights to form networks, is available at nn.cs.utexas.edu/?neuroevolution.
Software for HyperNEAT indirect neuroevolution method is available at eplex.cs.ucf.edu/hyperNEATpage.

PyBrain (pybrain.org) and Sferes2 (github.com/jbmouret/sferes2) are general machine learning and evolu-
tionary computation packages that include neuroevolution methods.

The OpenNERO software for evolving intelligent multiagent behavior in simulated environments is at
http://opennero.googlecode.com.

7 See also

Evolutionary Computation; Reinforcement Learning.

References

[1] D. Ackley and M. Littman, Interactions between learning and evolution, in: Artificial Life II, C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, eds., 487–509, Reading, MA: Addison-Wesley
(1992).

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack, An evolutionary algorithm that constructs recurrent
neural networks, IEEE Transactions on Neural Networks, 5:54–65 (1994).

[3] J. Bongard, Morphological change in machines accelerates the evolution of robust behavior, Proceed-
ings of the National Academy of Sciences, USA, 108(1234–1239) (2011).

[4] B. D. Bryant and R. Miikkulainen, Acquiring visibly intelligent behavior with example-guided neu-
roevolution, in: Proceedings of the Twenty-Second National Conference on Artificial Intelligence,
AAAI Press, Menlo Park, CA (2007).

[5] K. Chellapilla and D. B. Fogel, Evolution, neural networks, games, and intelligence, Proceedings of
the IEEE, 87:1471–1496 (1999).

[6] J. Clune, J.-B. Mouret, and H. Lipson, The evolutionary origins of modularity, Proceedings of the
Royal Society B: Biological Sciences, 280(1755):20122863 (2013).

5

[7] D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: From architectures to learning, Evolutionary
Intelligence, 1:47–62 (2008).

[8] F. Gomez and R. Miikkulainen, Active guidance for a finless rocket using neuroevolution, in: Proceed-
ings of the Genetic and Evolutionary Computation Conference, 2084–2095, Morgan Kaufmann, San
Francisco (2003).

[9] F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through cooperatively
coevolved synapses, Journal of Machine Learning Research, 9:937–965 (2008).

[10] F. Gruau and D. Whitley, Adding learning to the cellular development of neural networks: Evolution
and the Baldwin effect, Evolutionary Computation, 1:213–233 (1993).

[11] C. Igel, Neuroevolution for reinforcement learning using evolution strategies, in: Proceedings of
the 2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan,
B. McKay, D. Essam, and T. Gedeon, eds., 2588–2595, IEEE Press, Piscataway, NJ (2003).

[12] A. Keinan, B. Sandbank, C. C. Hilgetag, I. Meilijson, and E. Ruppin, Axiomatic scalable neurocon-
troller analysis via the Shapley value, Artificial Life, 12:333–352 (2006).

[13] J. Lehman and K. O. Stanley, Abandoning objectives: Evolution through the search for novelty alone,
Evolutionary Computation, 2011:189–223 (2010).

[14] D. Lessin, D. Fussell, and R. Miikkulainen, Open-ended behavioral complexity for evolved virtual
creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).

[15] Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning, IEEE
Transactions on Evolutionary Computation, 4:380–387 (2000).

[16] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O. Stanley, and C. H. Yong, Computa-
tional intelligence in games, in: Computational Intelligence: Principles and Practice, G. Y. Yen and
D. B. Fogel, eds., IEEE Computational Intelligence Society, Piscataway, NJ (2006).

[17] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, Evolutionary algorithms for reinforcement learn-
ing, Journal of Artificial Intelligence Research, 11:199–229 (1999).

[18] J.-B. Mouret and S. Doncieux, Encouraging behavioral diversity in evolutionary robotics: An empirical
study, Evolutionary Computation, 20:91–133 (2012).

[19] S. Nolfi and D. Floreano, Evolutionary Robotics, MIT Press, Cambridge (2000).

[20] M. A. Potter and K. A. D. Jong, Cooperative coevolution: An architecture for evolving coadapted
subcomponents, Evolutionary Computation, 8:1–29 (2000).

[21] S. Risi and J. Togelius, Neuroevolution in games: State of theart and open challenges (2014). Retrieved
11/14/2014.

[22] J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms and neural net-
works: A survey of the state of the art, in: Proceedings of the International Workshop on Combinations
of Genetic Algorithms and Neural Networks, D. Whitley and J. Schaffer, eds., 1–37, IEEE Computer
Society Press, Los Alamitos, CA (1992).

[23] J. Schrum, Evolving Multimodal Behavior Through Modular Multiobjective Neuroevolution, Ph.D.
thesis, The University of Texas at Austin, Austin, TX 78712 (2014). Tech Report TR-14-07.

6

[24] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, A Hypercube-Based encoding for evolving Large-
Scale neural networks, Artificial Life, 15(2):185–212 (April 2009).

[25] K. O. Stanley and R. Miikkulainen, A taxonomy for artificial embryogeny, Artificial Life, 9(2):93–130
(2003).

[26] K. O. Stanley and R. Miikkulainen, Competitive coevolution through evolutionary complexification,
Journal of Artificial Intelligence Research, 21:63–100 (2004).

[27] J. Togelius and S. M. Lucas, Evolving robust and specialized car racing skills, in: IEEE Congress on
Evolutionary Computation, 1187–1194, IEEE, Piscataway, NJ (2006).

[28] V. Valsalam, J. Hiller, R. MacCurdy, H. Lipson, and R. Miikkulainen, Constructing controllers
for physical multilegged robots using the enso neuroevolution approach, Evolutionary Intelligence,
14:303–331 (2013).

[29] G. M. Werner and M. G. Dyer, Evolution of communication in artificial organisms, in: Proceedings of
the Workshop on Artificial Life (ALIFE ’90), C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
eds., 659–687, Reading, MA: Addison-Wesley (1992).

[30] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9):1423–1447 (1999).

7

