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Abstract— In nature, multiple agents in teams collaborate and
compete with one another at the same time. Replicating such
agent interactions in games can make for realistic opponent
teams. Yet cooperation and competition have mostly been
studied separately so far. This paper focuses on simultaneous
cooperative and competitive coevolution in a complex predator-
prey domain. Multi-Agent ESP [23] architecture is first used to
evolve neural networks to control predator and prey agents, but
such a naive combination of otherwise successful architectures
turns out not to sustain an arms race. An extended architecture
consisting of multiple cooperating neural networks within each
agent is therefore introduced. This architecture successfully
results in hierarchical cooperation and competition in teams
of prey and predators: In sustained coevolution, high-level
pursuit-evasion behaviors emerge. In this manner, coevolution
of neural networks is shown to scale up to an arms race
of multiple competing and cooperating agents, more closely
modeling coevolution of complex behavior in nature.

I. INTRODUCTION

A major goal in Game AI is to develop intelligent behav-
iors that appear natural and believable. Extending complex
social interactions to autonomous game playing agents is par-
ticularly challenging. In nature, cooperative behavior leads to
team strategies that compensate for individual limitations and
aid in problem solving. For instance, herds and packs allow
animals to perform even challenging tasks of attacking larger
prey [3][14]. Similarly, competition between opponents may
give rise to an arms race that promotes learning of successive
strategies targeting each other’s weaknesses. For instance,
the Heliconius butterfly and the passionflower plant compete
in nature to evolve new traits in this manner[1]. At the
highest level of natural ecosystems, social structures consist
of hierarchical layers of competition and cooperation among
individuals.

In this paper, computational coevolution is used to study
how such competitive and cooperative behaviors can be
constructed for teams of game playing agents. Coevolution
refers to simultaneous evolution of two or more distinct
species with coupled fitness landscapes. In case of competi-
tive coevolution, the fitness of an individual is based on direct
competition with an individual from another population. In
cooperative coevolution, individuals from different popula-
tions cooperate to solve the problem together. Although
cooperative and competitive coevolution co-exist in nature,
and each affects the other, there have been few previous
attempts to study both of them simultaneously.
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Interactions among multiple autonomous agents are critical
in many games. For example, both cooperative and compet-
itive behaviors are required in robotic soccer as well as in
Unreal Tournament’sTM capture the flag [7]. Such games are
typically dynamically changing and open-ended, and such
behaviors are difficult to achieve using the traditional scripted
agent approach.

In contrast, neuroevolution has been used successfully for
agent control in several dynamic, open-ended games such
as simulated robot soccer [21], robotic battle [18] and Ms.
Pac-Man [2]. Neuroevolution techniques are therefore used
as the starting point for evolving team behaviors in this
paper. The Multi-Agent ESP architecture [23] is extended to
competitively and cooperatively coevolve teams of predators
and prey. The predator-prey domain was selected as the
experimental platform because it is a good surrogate for agent
control problems in team games, and because it is easy to
simulate with quantifiable results.

Two experiments of increasing complexity are performed:
First, a team of predators is coevolved with a single prey.
Second, using the insights from the first experiment a team
of predators is coevolved with a team of prey. The main
contribution of this paper is to develop methods that sustain
both competitive and cooperative coevolution in a complex
environment. Placing prey and predators against each other
gives rise to an arms race that leads to evolution of more and
more complex pursuit and evasion strategies [12].

The paper is organized as follows. Section 2 describes
prior work on competitive and cooperative coevolution.
Section 3 explains the predator-prey problem domain and
Section 4 puts forth hypotheses about sustenance of arms
race and emergence of behaviors. Section 5 includes detailed
descriptions of the experiments and Section 6 gives the
results of these experiments. Section 7 analyses the results
and Section 8 presents concluding remarks.

II. BACKGROUND AND RELATED WORK

Coevolution is defined as the simultaneous evolution of
two different populations whose fitnesses are measured based
on their interactions with each other [11]. In competitive
coevolution, the two populations have opposing interests and
the success of one population depends on the failure of the
other. An arms race emerges as the coevolution proceeds;
each population evolves a little more at every step so as to
defeat the other. Competitive coevolution is usually used to
simulate the behavior of competing forces in nature, such as
predators and prey. But it can also be used as a method of
improving the fitness of a single population by duplicating
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it and coevolving the two populations to outdo each other.
After it was first described by Hillis [6] as a host-parasite
problem, competitive coevolution has been studied exten-
sively by many researchers [5][10][11][13][17]. Mitchell
[10], in particular, compares competitive coevolution and
plain evolutionary techniques. Competitive coevolution has
many advantages: it does not get stuck at local optima as
often, it discovers higher-level strategies, it requires sparser
training, and it preserves diversity over longer periods.

The arms race can be hard to sustain for extended periods
because of over-specialization, red queen dynamics and loss
of gradients [11][12]. Over-specialization happens when the
two competing populations learn to defeat each other eas-
ily but cannot generalize to new environments. Red queen
dynamics refers to stagnation caused by oscillation of the
two populations among a set of states none of which is an
improvement over another. Loss of gradients happens when
evolution cannot proceed because all the population members
are equally good at losing to or winning over members of the
opposing population. Many attempts have been made to over-
come these obstacles. For example, in spatial coevolution the
hosts and parasites are distributed on a grid, and each of them
interacts only with the hosts/parasites that are located close to
it on the grid [10][11][22]. Another way to avoid stagnation
is to preserve the good behaviors of previous generations
in a Hall of Fame so that diversity is not lost [12][16][17].
Resource sharing, also known as competitive fitness sharing
[6][13][17], is another tactic where a population member is
considered fitter if it defeats an opposing population member
that few others have defeated.

In cooperative coevolution, different agents have to evolve
to cooperate to perform a task. They share all the rewards and
punishments of their individual actions equally. Cooperative
coevolution is easier to achieve if the agents are components
of the same system in which case they can learn different
roles [23]. For example, in the Enforced SubPopulations
(ESP) architecture [4], neurons selected from different sub-
populations are required to form a neural network whose
fitness is then shared equally among them. Such an approach
avoids competing conventions among the component neu-
rons and limits their individual search space. This makes
neuroevolution faster and more efficient, and helps establish
cooperation between the components. Similarly, Potter and
De Jong [15] describe an architecture for evolving subcom-
ponents as a collection of cooperating species.

Simultaneous cooperative and competitive coevolution was
implemented in an experiment with soccer playing robots by
Uchibe and Asada [20]. Their work is significantly different
from that in this paper in many ways. While Uchibe and
Asada coevolve two cooperating players against one compet-
ing player, the experiments in this paper simulate an environ-
ment comprising teams of prey and predators. The multiple
levels of cooperation and competition in these experiments
are closer to the complexity of such processes in nature.
Furthermore, Uchibe and Asada use Genetic Programming
to evolve decision trees for their agents but are not able to

sustain an arms race. In contrast, Neuroevolution is used in
this paper, particularly because it has supported an arms race
successfully in games [18].

III. THE PREDATOR-PREY DOMAIN

In the predator-prey domain, predators chase and try to
capture prey in a simulated environment. The domain is a
special case of the well-known pursuit-evasion problem in
mathematics and computer science. Pursuit-evasion problems
are common in game agents. They pose a formidable chal-
lenge for learning algorithms because of their dynamically
changing environments. The predator-prey domain is open-
ended and requires continuous discovery of good behaviors
on the part of both the predators and the prey. The agents
in the simulation should be able to adapt to this changing
environment using a supervised training algorithm because
the outcome of any single action of the agent is typically not
known. The predator-prey domain can easily be extended to
include multiple agents, teams of agents having similar goals
and other more complex scenarios. It is thus a good problem
to study both competitive and cooperative coevolution in
games [9].

Fig. 1. Multi-Agent ESP architecture; numbered circles are predators and
the triangle is the prey. Each Predator-Prey agent is controlled by a single
neural network consisting of several hidden neurons. Each neuron in the
hidden layer is drawn from its own subpopulation. Agent neural networks
are evaluated in the domain at the same time, and fitness for the team is
passed back to the participating neurons [23].

In one such study, Yong and Miikkulainen [23] extended
the ESP neuroevolution method to the level of networks
(see Figure 1). In their Multi-Agent ESP architecture, three
neural networks were evolved in parallel to control three
predators for the prey-capture task. These predators had to
learn to cooperate to capture a single non-evolving fixed-
behavior prey that none of them could catch on their own.
Yong and Miikkulainen showed that this approach is more
efficient than evolving a single central controller for all



predators. Also, they found that cooperation is most efficient
through rolebased responses to the environment (i.e through
stigmergy), rather than direct communication between the
agents.

In this paper, their work is extended to the scenario
where a team of prey is coevolved together with a team
of predators. The world in this simulation is a discrete
toroidal environment with three evolving predators which
try to catch two evolving prey. The predators are aware of
prey positions and the prey are aware of predator positions.
However, there is no direct communication within a prey
or predator team. The prey and predators move at the same
speed and so, in the toroidal world, the predators cannot
catch the prey if they use a greedy strategy of just following
the prey around. A time limit is placed on the simulation
to make sure that the predators do not keep moving at
random and capture the prey by accident. Instead, they need
to surround the prey from different sides so that they do not
have anywhere to escape before they can catch them. This
behavior requires high-level cooperative strategies to evolve
in the predators. Similarly, the prey can collaborate to evade
the predators more effectively. In addition to cooperative
behavior, predators and prey compete, and continually evolve
to exploit the weaknesses of each other.

IV. HYPOTHESES

The main goal of these experiments is to sustain simulta-
neous cooperative and competitive coevolution in a complex
environment that includes teams of predators and prey. How
different strategies emerge in the prey and predators as
they interact with one another in this environment will be
characterized in detail. Two hypotheses will be tested:

1) Can an arms race be sustained in an environment with
simultaneous cooperative and competitive coevolution?
Although it can be hard to sustain coevolution as dis-
cussed in the section 2, the predators and prey should
not get stuck at local optima but continue to learn
increasingly complex strategies to counter each other.
The first hypothesis is that simultaneous cooperative
and competitive coevolution can be sustained without
stagnation.

2) Can cooperative and competitive behaviors like baiting
and herding emerge in predators and prey in such
conditions?
As mentioned above, the predators need to cooperate
and surround a prey before catching it. If there are
multiple prey in the environment, the predators should
evolve to catch all of them. An interesting question
is whether the predators can group or herd the prey
together to make them all occupy the same position
before catching them simultaneously. The prey can
learn baiting strategies to avoid being captured. Thus
the second hypothesis is that the predators and prey
will learn such competitive and cooperative behaviors
and formations while adapting to each others’ strengths
and weaknesses.

V. EXPERIMENTS

This section describes the experiments conducted to ob-
serve the interaction between predators and prey in the
pursuit-evasion problem. There is cooperative coevolution
between the predators as they learn to work as a team to
surround the prey and capture them. The prey also cooperate
as a team and their goal is to evade the predators. The preda-
tor and prey compete against each other. The environment
is a 100x100 toroid without any obstacles. The prey and
predators can move in four directions: east, west, north and
south. They move one step at a time, and all the agents in
the world take a step simultaneously. The predators are said
to have caught a prey if one of them moves into the same
location in the world as the prey.

Multi-Agent ESP is used to evolve both the prey and
the predators with the following parameter settings: Each
neural network is feedforward with a single layer of 10
hidden neurons and sigmoidal activation functions. Each
subpopulation consists of 100 neurons; each neuron (or
a chromosome) is a concatenation of real-valued numbers
representing full input and output connections of one hidden
unit. During each evolutionary generation, 1,000 trials are run
wherein the neurons are randomly chosen (with replacement)
from their subpopulations to form a neural network. In
each trial, the team is evaluated six times. The prey and
predators start at random locations each time so that neither
of them has an advantage over the other. The fitnesses over
the six evaluations are averaged, and assigned to all the
neurons that constituted the network. After the trials, the top
25% of neurons within each subpopulation are recombined
using one-point crossover. The offspring replace the bottom
50% of the neurons in the corresponding subpopulation, and
they are then mutated with a probability of 0.4 on one
randomly-chosen weight on each chromosome, by adding
a Cauchy-distributed random value to it. Small changes to
these parameters lead to similar results.

Throughout the study, there are three predators that form
a team that has to cooperate to catch the prey. Each predator
has as its inputs the x, y offset distances of all the prey
from that predator. Similarly, each prey has as its inputs
the x, y offset distances of all the predators from that prey.
The output neurons represent different actions that a prey or
predator agent can take. Each prey has only four possible
output actions in each time step (move east, west, north, or
south) and the predators have five (move east, west, north,
south, or idle). To evolve blocking strategies in predators, the
idle action is often important.

The predator fitness is higher if a predator team catches
both prey together rather than one by one. Such a fitness
function encourages herding of prey. The average distance
of the predators from the prey is also included in the
fitness function to help score predator teams that do not
catch any prey. This fitness component discourages random
predator movements and provides a smooth gradient. More
specifically,



Zpredator =

⎧⎨
⎩

25 if both prey caught,

20γm

n + 2γm + 20d
n otherwise,

where γm is the number of prey caught, n is the total number
of prey, and d is the normalized sum of distances from the
predator to each of the prey at the end of the simulation.

Using a prey fitness function complementary to the preda-
tor fitness function (i.e the higher the predator fitness, the
lower the prey fitness and vice-versa) [6] did not result in
good evasion strategies for prey. Instead, a prey’s fitness was
defined to be proportional to its lifespan. Even if one of the
prey was captured, both prey were punished although less
severely than if both were captured. If both prey survived
until the end of the simulation, they were assigned the
highest possible fitness. The simulation was limited to a
maximum of 150 time steps so that the predators would have
a finite amount of time in which to capture the prey. More
specifically,

Zprey =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

25 if neither prey caught,

12.5 if one prey caught,

12.5ρ
R if both prey caught,

where ρ is the number of time steps for which at least one
prey remained alive, and R is the maximum possible number
of time steps.

The best predator and prey teams from each generation
are saved in a Hall of Fame, and used during crossover in
later generations.

Fig. 2. Split Network Architecture - A single agent consists of multiple
networks. Each network is dedicated to one opposing team member. Fitness
is distributed equally among the participating hidden neurons of the agent
networks.

VI. RESULTS

At first, some preliminary experiments were carried out
that helped determine the underlying problems in scaling
coevolution to teams of prey and predators. The insights from
these experiments were then used to develop new techniques
for sustaining coevolution of a predator team against both
single and multiple prey. Every experiment consisted of
several simulation runs. Similar behaviors evolved during
these runs, and the results from a typical run are discussed
here.

A. Preliminary Experiments

In the first experiment, a team of two prey was coevolved
with a team of three predators. Each prey and predator was
controlled by a single neural network and fitness shared
within a team through Multi-Agent ESP architecture. The
experiment did not result in evolution of smart strategies
on the part of predators. This outcome in turn implied that
the prey were not required to learn any effective evasive
behaviours. A state of stagnation resulted where the prey
always win.

In order to study this stagnation in greater detail, the
experiment was simplified to involve a single prey. It is
important to note that now the problem is much more
complex for the prey than the predators, especially because
the prey has to keep track of each of the three predator
positions. Therefore the predators are easily able to catch
the single prey. Overwhelming amounts of input information
to the prey seemed to be a possible cause for this situation.
However, just increasing the number of hidden neurons in
each prey neural network did not yield improved results. This
outcome suggests that the components within the existing
Multi-Agent ESP architecture (hidden neurons) were not able
to effectively cooperate to decompose the prey evasion task.
To solve this problem, new prey architecture was introduced.

Another hierarchical layer was added to the Multi-Agent
ESP architecture bringing cooperatively coevolving compo-
nents to the agent level.

In this architecture, each individual prey agent is split
into three neural networks evolved with Multi-Agent ESP
as shown in Figure 2. Each neural network of the prey has
x and y offset distances of one predator as its input, and
its outputs represent the confidence values of four possible
prey actions. The output values from each neural network
corresponding to a given action are added up and the action
corresponding to the largest sum is selected (see Figure 3).

With this split network architecture, coevolution was suc-
cessfully sustained as will be described next. The success rate
of prey and predators alternate in cycles and new behaviors
emerge in each phase. Videos of these behaviors are available
at http://www.dailymotion.com/conference videos/1. (Note:
In these videos, prey are black squares and predators are
colored squares)

B. Arms Race in Predator Team vs. Single Prey

Each predator agent assumed the role of either an attacker
or blocker. The role of an attacker is to chase the prey, while



Fig. 3. Neural Network Output Combiner for Predator agent. The output
values from each neural network corresponding to a given action are added
up and the action corresponding to the largest sum is selected.

the blocker moves in a localized area to obstruct the prey’s
path.

Initially in generations 50-75, the prey evolves only a
greedy fleeing strategy, where it moves away from the closest
approaching predator. Simple predator behavior is enough to
catch the prey in this case. Two predators block the prey and
the third approaches it from the third direction (Figure 4,
Phase 1, and Video 1). The success rate of the predators is
high in this phase. At generations 75-100, the prey evolves
to selectively use the option of fleeing from the closest
predator, and sometimes goes around in a small circle with
the closest predator following on its tail (Figure 4, Phase 2
and Video 2). At this stage, the other predators too move
between fixed positions without making any new move to
catch the prey because they are acting as blockers. The prey
survives more often and therefore has high success rate in
this phase. For generations 100-150, the predators learn to
avoid this deadlock (Figure 4, Phase 3 and Video 3). Two
of them now approach the prey from opposing directions
(acting as attackers) and the third one assumes the role of
blocking. The predators are more successful in this phase
of the arms race. In the next phase (generations 150-180),
the prey demonstrates intelligent baiting behavior by waiting
for the two predators to converge towards it before moving
away in a direction opposite to that of the predators (Figure
4, Phase 4 and Video 4). Since the third predator, the blocker,
remains mostly stationary, the prey can easily dodge it. To
counter this move, the predators learn to dynamically switch
roles in generations 180-200 (Figure 4, Phase 5 and Video
5). The blocker also starts to follow the prey when it tries to
escape.

In generations 200-250, the prey is captured often by two
attackers and one blocker (Figure 4, Phase 6). In generations
250- 300, the prey learns to avoid the blocker by sidestepping
as it crosses the blocker’s path (Figure 4, Phase 7 and Video

6). The blocker counters this (in generations 320-360) by not
blocking the path of the prey directly. It stays a couple of
steps away from the straight line path of the prey and then
moves towards it (in a direction perpendicular to the prey) as
soon it comes within a catch able distance (Figure 4, Phase
8 and Video 7). In the next phase (generations 400-450), the
prey learns to reverse its direction so that it avoids both the
attackers and the blocker (Figure 4, Phase 9 and Video 8).

The observations above clearly demonstrate that the split
network architecture is successful in sustaining an arms race.
This idea is next applied to teams of predator and prey agents
to help sustain simultaneous cooperative and competitive
coevolution.

C. Cooperative and Competitive Coevolution in Prey and
Predator Teams

Let us now return to the original problem of coevolving
three predators versus two prey. To solve the initial chal-
lenge of stagnant behaviors in predators, the split network
architecture is used for the predators as well. Each predator
now consists of two neural networks to keep track of the two
prey. As with the single prey experiment, each prey consists
of three neural networks (one for each predator). Fitness is
shared between multiple neural networks within an agent
through the Multi-Agent ESP architecture. At a higher level,
each team of agents also shares fitness in a similar fashion.

The hierarchical layers of cooperation and competition are
shown in Figure 5. There are three levels of cooperation
operating in this system. Hidden neurons selected from
separate coevolving subpopulations within a single neural
network cooperate to form the Level 1 of this hierarchy. At
the next level, multiple neural networks within a single agent
cooperate to generate agent behavior. At the third level the
individual agents in a team cooperate to defeat the other
team. At the highest level, there is competition between the
teams of predators and prey. In the previous experiment of
predator team vs. single prey, each predator agent has only
a single neural network to track the single prey. Similarly,
there is no team-level cooperation for the prey.

This scenario of multiple evolving prey is far more com-
plex than that of a single evolving prey. There are multiple
predators and prey on the field simultaneously and thus
there are far more factors that affect the evolution of both
the teams. The hierarchical structure makes it possible to
distribute roles effectively, which in turn allows both popu-
lations to adapt to the continuously changing environment.

The predators must choose between two alternatives -
catching the prey one by one or herding them together.
Herding of prey is a complex behavior especially because
the predators have to sacrifice the immediate gain of catch-
ing a single prey to achieve better efficiency by catching
them together. In the beginning (generations 0-25) when
predators have not yet learned high-level pursuit behaviors,
they unsuccessfully attempt to herd the prey before capture.
The prey easily evade the predators during this time. At
(generations 25-50), predators first attempt to herd the prey,
but if their pursuit fails, they switch to catching the prey one



Fig. 4. Arms Race in Team of Predators vs. Single Prey: Emergence of predator-prey behavior in phases.

after the other. At this point most of the behaviors observed
in the single prey scenario (like dynamic role switching in
predators and baiting by the prey) also evolve in this case.
At generations 150- 200, predators are able to succeed in
herding the prey and capturing them simultaneously (Figure
6, Phase 1 and Video 9). To counter herding (generations
250-320), the prey evolve to scatter in different directions just
before the predators converge on them (see Figure 6, Phase
2 and Video 10). One reason for this last-minute scattering
could be that once the predators have almost converged, they
are all roughly in the same location, making it easier for the
prey to evade them. In this manner, behaviors coevolve in
cycles, resulting in complex final behaviors for both predators
and prey.

VII. DISCUSSION

The experiments show that it is possible to sustain coevo-
lution of teams of competing and cooperating agents. This
result was made possible by a new architecture that consists
of cooperating components.

Initially when each agent consisted of a single neural
network, the simulation stagnated to fixed behaviors and arms
race did not occur. The predators did not learn to catch the
prey and hence no smart evasive strategies emerged in the
prey. Simplifying the problem to a single prey suggested
that the agents apparently did not have enough computing
resources to track the actions of the opposing team. However,
the problem was not that simple: Simply increasing the
number of hidden neurons did not solve it. Only when a new
Multi-Component ESP architecture was created, coevolution



Fig. 5. Hierarchical Levels of Cooperation and Competition in teams of
Prey and Predators.

was sustained. As part of this architecture, the number of
neural networks was increased within a single agent. This
number was matched to the number of members in the
opposing team so that each neural network kept track of
one of them. As a result, coevolution was sustained even
in the case of competing teams of three predators and two
prey. The important insight is that it is easier to coevolve
components that cooperate to form a solution, rather than
evolve the complete solution directly. This idea is, of course,
the same that motivated ESP and Multi- Agent ESP. In this
paper, it is shown to apply to the level of complex behavior
in individual agents, as part of the multi-level hierarchy of
collaboration and competition.

As demonstrated by Yong and Miikkulainen [23], the
predators initially evolve rigid role-based behaviors in which
some of them act as attackers and others as blockers. Each
predator reacts to the preys’ actions, and direct communica-
tion (knowledge of team members’ positions) between the
predators is unnecessary. The attackers actively pursue the
prey from different directions, and the blocker moves into
a location that prevents the prey from escaping. However,
the prey evolves a smart counter strategy: it waits for two
attacking predators to converge before fleeing (Figure 4).
Further, it reacts differently to each predator, suggesting that
it has learned the possible role definition for the predators. To
counter these more complex strategies in prey, the predators
learn to switch roles (as shown in Figure 4). This result
is interesting because in the original experiments by Yong
and Miikkulainen, such dynamic role switching occurred
only in communicating agents [23]. However, coevolution is
powerful enough to find a way to switch roles even without
communication. Coordination is still based on stigmergy,
i.e, absorbing the clues in the environment (such as prey
behavior), but it is a more complex and dynamic version
of it. Communication is without doubt a useful ability, but
it is interesting to see that quite complex and flexible team
behavior can be achieved efficiently even without it.

Fig. 6. Arms Race in Team of Predators vs. Team of Prey: Emergence of
predator-prey behavior in phases.

VIII. FUTURE WORK

This research makes many directions of future work pos-
sible. First, the arms race between predators and prey should
continue beyond the observations made in this paper, and
could lead to the emergence of even more complex behaviors.
However, as the simulation progresses, these behaviors take
more and more time to discover and they are more difficult
to analyze. Thus the next step is to develop new methods to
look at and analyze such increasingly complex behaviors.

Preliminary experiments show that using a combiner neu-
ral network to aggregate the split networks output in the
Multi-Component ESP architecture is another interesting
research direction. This approach makes it possible to uti-
lize correlations among relative locations of various agents.
Different split network topologies can be evolved based upon
the complexity of the problem domain.

Application of this work to other domains like Robot
Soccer or Unreal TournamentTM is an interesting possibility
as well. Eventually, simultaneous competitive and coopera-
tive coevolution may thus make it possible to build artificial
systems that are comparable in complexity to those seen in
nature.

IX. CONCLUSIONS

The experiments in this paper confirmed two hypotheses.
First, competitive and cooperative coevolution were suc-
cessfully sustained in the predator-prey domain. Second, a
hierarchy of cooperation and competition similar to that
in nature was observed to emerge, including various high-
level competitive and cooperative strategies in both predators



and prey. This process was made possible by a new Multi-
Component ESP architecture for a single agent, where each
agent controller consists of multiple cooperating neural net-
work modules. As a result, the predators learned to switch
roles dynamically based on stigmergy, and to herd the prey
together before capturing them. To counter these predator
behaviors, the prey learned high-level strategies such as
baiting, scattering, direction reversal and sidestepping. These
behaviors were learned in an arms race with predators and
prey each being the successful population in turn. Such a
competitive and cooperative coevolution is a possible way to
construct complex behaviors for games in the future.
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