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Abstract—The UTˆ2 bot, which had a humanness rating
of 27.2727% in BotPrize 2010, is based on two core ideas: (1)
multiobjective neuroevolution is used to learn skilled combat
behavior, but filters on the available combat actions ensure
that the behavior is still human-like despite being evolved for
performance, and (2) a database of traces of human play is used
to help the bot get unstuck when its navigation capabilities fail.
Several changes have recently been made to UTˆ2: Extra input
features have been provided to the bot to help it evolve better
combat behavior, the role of human traces in the navigation of
the bot has been expanded, and an extra control module has
been added which encourages the bot to observe other players
the way a human would, rather than simply battle them. These
changes should make UTˆ2 act more human-like in this year’s
BotPrize competition.

I. BOTPRIZE

The BotPrize competition has been held as part of
the Computational Intelligence and Games conference
since 2008. The competition is a Turing Test [27] for bots in
the game Unreal Tournament 2004 (UT2004), a first-person
shooter game in which players run around 3D arenas trying
to kill each other for points. The goal of the competition is
to see if computer game bots can fool human judges into
believing they are human at least 50% of the time.

The first two years of the competition [11] used the stan-
dard Turing Test format of one human judge, one computer
program, and one human confederate per match. Judges
designated one opponent from each match as a human and
rated each opponent on a humanness scale. This format was
changed for the 2010 competition [12] into a judging game,
where judgements are made during the match using a special
judging gun. This version of the competition lacks human
confederates, and instead puts all bots and all human judges
into a match together. Players can judge each opponent once
with the judging gun, and the final humanness rating of each
player is the percentage of times the player was judged as
a human out of all judgments against it. The bots face an
extra challenge in this format, because they have access to
the judging gun as well. Whenever any player, human or
bot, correctly judges an opponent, that opponent dies and
the shooter receives 10 points. However, the shooter dies
and loses 10 points if the wrong judgment was made.

In the 2010 competition the UTˆ2 bot took 2nd place with
a humanness rating of 27.2727%. A list of the humanness
ratings of all participants is shown in Table I. UTˆ2 is the
entry from the University of Texas at Austin, and the name
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Player Type Humanness
Mads Frost Human 80.0000%
Simon and Will Lucas Human 59.0909%
Ben Weber Human 48.2759%
Nicola Beume Human 47.0588%
Minh Tran Human 42.3077%
Gordon Calleja Human 38.0952%
Mike Preuss Human 35.4839%
Conscious-Robots Bot 31.8182%
UTˆ2 Bot 27.2727%
ICE-2010 Bot 23.3333%
Discordia Bot 17.7778%
w00t Bot 9.3023%

TABLE I: BotPrize 2010 Results (UTˆ2 highlighted). Hu-
manness equals the number of human judgments divided by
the total judgments, all multiplied by 100. UTˆ2 beat three
entries to get 2nd place. However, none of the entries are
more human than the least human of humans.

stands for University of Texas in Unreal Tournament. This
version of the bot, referred to as UTˆ2-2010 for the rest of
this paper, was based on two core ideas: (1) multiobjective
neuroevolution was used to learn skilled combat behavior,
but filters on the available combat actions ensured that the
behavior was still human-like despite being evolved for
performance, and (2) a database of traces of human play
was used to help the bot get unstuck when its navigation
capabilities failed. UTˆ2-2010 is described in full detail in
upcoming chapters [16, 20] for the book Believable Bots.

The UTˆ2 bot has been modified in several ways
since 2010 in order to increase its humanness rating for this
year’s competition: Extra input features have been provided
to help it evolve better combat behavior, extra filters on
combat actions inject more human knowledge into the bot,
the role of human traces in the navigation of the bot has
been expanded, and an extra control module has been added
which encourages the bot to observe other players the way a
human would, rather than simply battle them. The remainder
of this chapter first discusses the general architecture used to
control UTˆ2, and then goes into detail describing each of
these enhancements. These changes were developed with the
rules from the 2010 competition in mind, and even though
the rules for the upcoming 2011 competition are still being
worked out, the changes made to UTˆ2 should improve its
performance in this year’s BotPrize competition.

II. ARCHITECTURE

The UTˆ2 bot uses a behavior-based architecture in which
a list of behavior modules is cycled through in priority order
on every logic cycle. This architecture is somewhat similar
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to both the POSH framework [5], and to behavior trees [14].
Each behavior module has a trigger, and if a module’s trigger
fires on a given cycle, then that module defines the behavior
of the agent for that logic cycle. The full architecture is
shown in Fig. 1. The control modules, from highest to lowest
execution priority, are:

1) UNSTUCK: Getting unstuck has highest priority since
being stuck is a very bot-like behavior that prevents
the execution of other actions.

2) GET DROPPED WEAPON: Causes the bot to rush and
pick up weapons that enemies drop upon dying.

3) IMPORTANT ITEM: Makes the bot pursue items like
the Keg o’ Health (which allows players to exceed the
normal maximum health limit) and UDamage (which
doubles the damage dealt by the bot for 30 seconds)
whenever they are nearby, even if it means breaking
off from combat. Obtaining these items is considered
more important than fighting.

4) GET GOOD WEAPON: Whenever the bot has only
the starting weapons, it is not able to put up much of a
fight. Therefore, running to get a good weapon is more
important than fighting.

5) JUDGE: The judging gun has infinite ammo, so it is
possible to judge at any time. This module decides
when to judge a given opponent, and whether the
opponent should be judged as a human or bot.

6) OBSERVE: In the judging game variant of UT2004
used for BotPrize, it is very common for humans
to stand back and watch other players, particularly
groups of opponents. This module tries to emulate such
observation behavior.

7) SHIELD GUN: The shield gun is a melee weapon
with regenerating ammo that is very hard to use. It
also allows players to shield themselves from incoming
projectiles. However, despite its versatility, it is harder
to use than the standard projectile weapons available.
Therefore, the bot only uses the shield gun if it is out
of ammo for all other weapons, and has no reason to
judge or observe.

8) BATTLE: If the bot does have ammo when encounter-
ing an enemy that it neither wants to judge nor observe,
then it enters combat.

9) CHASE: If an opponent is lost during combat, the bot
will chase after it.

10) RETRACE: If there are no interesting items or oppo-
nents to interact with, the bot simply explores the level.
This module uses replay of human traces to explore the
level, when the traces are available.

11) PATH: As a failsafe for when human trace data is not
available, the bot can explore using the level’s built-in
navigation graph.

In terms of Computational Intelligence, the two most
interesting features of UTˆ2 are that its combat behavior is
defined via an evolved neural network (in BATTLE), and both
its navigation and its routine for getting unstuck make use
of a database of traces of human behavior (via the Human

Retrace Controller from both UNSTUCK and RE-
TRACE). Therefore, these modules will be discussed in detail
next. Later, the OBSERVE module will also be discussed,
because this is a new module added for the 2011 competition.

III. EVOLVED BATTLE CONTROLLER

UTˆ2-2010’s Battle Controller was learned us-
ing multiobjective constructive neuroevolution. This method
of neuroevolution is the same as in [21], and uses the pop-
ular multiobjective evolutionary algorithm Non-Dominated
Sorting Genetic Algorithm II (NSGA-II [8]) in conjunction
with neuroevolution principles inspired by Neuro-Evolution
of Augmenting Topologies (NEAT [22]).

A. Neuroevolution

Neuroevolution is the application of evolution to artificial
neural networks. UTˆ2’s combat behavior was learned via
constructive neuroevolution, meaning that the networks start
with minimal structure and only become more complex as
a result of mutations across several generations. The initial
population of networks consists of individuals with no hidden
layers, i.e. only input and output nodes. Furthermore, these
networks are sparsely connected in a style similar to Feature
Selective NEAT (FS-NEAT [31]). Initializing the networks in
this way allows them to easily ignore any inputs that are not,
or at least not yet, useful. UTˆ2 makes use of a large number
of network inputs, so it is important to be able to ignore
certain inputs early in evolution, when establishing a baseline
policy is more important than refining the policy. The full set
of inputs used by UTˆ2-2010 is described in [20], but some
extra inputs added to UTˆ2 for this year’s competition are
described later in section III-C.

Three mutation operators were used to change network be-
havior. The weight mutation perturbs the weights of existing
network connections, the link mutation adds new (potentially
recurrent) connections between existing nodes, and the node
mutation splices new nodes along existing connections. Re-
current connections transmit signals that are not processed
by the network until the following time step, which makes
them particularly useful in partially observable domains. In
the context of reinforcement learning problems [25], such as
UT2004, an environment is partially observable if the current
observed state cannot be distinguished from other observed
states without memory of past states. Recurrent connections
help in these situations because they encode and transmit
memory of past states. These mutation operators are similar
to those used in NEAT [22]. Crossover was not used.

This section explained the representation that was used
to evolve policies for UTˆ2. The next section explains the
algorithm controlling how the space of policies was searched.

B. Evolutionary Multiobjective Optimization

In multiobjective optimization, two or more conflicting
objectives are optimized simultaneously. A multiobjective
approach is important for domains like UT2004, which
involve many conflicting objectives: kill opponents, avoid
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Fig. 1: UTˆ2 Architecture. Control cycles through modules listed (on the left) once every logic cycle. If a module’s trigger
fires, then that module will define the bot’s next action. Most modules have an associated controller (middle column) that
further arbitrates between several available actions, or otherwise aggregates and makes use of information relevant to the
actions performed by that module. All actions available to the controllers are in the right column. One of these actions is
executed each logic cycle. Some control modules are simple enough that they do not need controllers: They carry out a specific
action directly. Most of the control in this diagram flows from left to right, but note that the Unstuck Controller can
actually make use of the Human Retrace Controller to define its action. This behavior-based architecture modularizes
bot behaviors, making the overall behavior easier to understand, and making programming and troubleshooting easier.

damage, etc. Important concepts in dealing with multiple
objectives are Pareto dominance and optimality. 1

Pareto Dominance: Vector ~v = (v1, . . . , vn) dominates
~u = (u1, . . . , un), i.e. ~v � ~u, iff

1. ∀i ∈ {1, . . . , n} : vi ≥ ui, and
2. ∃i ∈ {1, . . . , n} : vi > ui.

Pareto Optimality: A set of points A ⊆ F is Pareto optimal
iff it contains all points such that ∀~x ∈ A: ¬∃~y ∈ F such
that ~y � ~x. The points in A are non-dominated, and make
up the non-dominated Pareto front of F .

The above definitions indicate that one solution is better
than (i.e. dominates) another solution if it is strictly better in
at least one objective and no worse in the others. The best
solutions are not dominated by any other solutions, and make
up the Pareto front of the search space. Therefore, solving a
multiobjective optimization problem involves approximating
the Pareto front as best as possible, which is exactly what
Evolutionary Multiobjective Optimization (EMO) methods
do. The EMO method used in this work is NSGA-II [8].

NSGA-II uses a (µ+λ) selection strategy. In this paradigm,
a parent population of size µ is evaluated, and then used to
produce a child population of size λ. Selection is performed
on the combined parent and child population to give rise to
a new parent population of size µ. NSGA-II uses µ = λ.

NSGA-II sorts the population into non-dominated layers
in terms of each individual’s fitness scores. For a given
population, the first non-dominated layer is simply the Pareto

1These definitions assume a maximization problem. Objectives that are
to be minimized can simply have their values multiplied by −1.

front of that population. If this first layer is removed,
then the second layer is the Pareto front of the remaining
population. By removing layers and recalculating the Pareto
front, the whole population can be sorted. Elitist selection
favors individuals in the less-dominated layers. Within the
same layer, individuals that are more distant from others
in objective space are preferred based on a metric called
crowding distance. The crowding distance metric ensures the
exploration of diverse trade-offs between objectives.

Applying NSGA-II to a problem results in a population
containing a close approximation to the true Pareto front with
individuals spread out evenly across the trade-off surface
between objectives. The details of how this process was
carried out in UT2004 are covered in the next section.

C. Evolution of UTˆ2

This year a new controller was evolved using the methods
described above. Evolution occurred against native UT2004
bots in the relatively small map DM-1on1-Albatross to
ensure that as much of the bot’s time was spent in combat as
possible. The set of objectives used was a simple set of three:
damage dealt (maximize), damage received (minimize), and
number of collision events with level geometry (minimize).
In a game as complex as UT2004, there are many other
sensible objectives that could be used, such as maximizing
accuracy and death match score, but only three objectives
were used because NSGA-II tends to have trouble making
useful distinctions between solutions as the number of ob-
jectives grows.



Several input sensors were added to the bot’s neu-
ral network, most interesting of which are the opponent-
movement sensors. These are sensors that determine heuristi-
cally whether an opponent is executing one of a small set of
combat movement options that are available to the bot. Such
sensors were built to make evolution of mimicry possible
should it prove useful in combat. Such mimicry should be
useful since evolved behavior is generally not inherently
human-like.

However, human-like tendencies are enforced in how the
outputs of the network are interpreted. As with UTˆ2-2010,
the combat actions available to UTˆ2 are defined relative
to its current opponent, which was selected via a scripted
routine. The available actions are: Approach, Retreat,
Strafe (left or right), stand Still, and Go To Item
which is nearest. The bot always looks at the opponent
while performing these actions, and thus seems to be focused
in a human-like manner. The opponent-movement sensors
indicate if the bot’s opponent is performing any of these
actions. During these actions, the bot has the option of
jumping and/or shooting. UTˆ2-2010 evolved the decision
of when to shoot, but this year’s version simply favors
shooting whenever a target is available. Many new filters and
restrictions on when these actions can be performed have also
been added, as described in the following list:

• Disallow Go To Item if
– Item undesirable.

• Disallow Retreat if
– Wall directly behind bot.

• Disallow Approach if
– Within range with sniping weapon, or
– Opponent not retreating and within range with

rocket launcher, or
– Very close to opponent.

• Disallow Strafe if
– Extremely close to opponent.

• Disallow Still if
– Threatened at close range, or
– Bot is far and weapon is only effective when close.

• Force Approach if
– Charging secondary Bio-Rifle shot.

• Force Strafe if
– Wall is close on opposite side.

• Force Still if
– Bot is either not Approaching, has the high

ground, or is not using a close-range weapon, and
∗ Not threatened when using medium-range

weapon, or
∗ Not threatened when using close-range weapon

from ideal distance, or
∗ Using sniping weapon from afar or high ground.

In the hierarchical list above, an action that is disallowed
can no longer be forced. These and other restrictions on bot
behavior were added based on the authors’ knowledge of

what humans consider to be human-like/bot-like behavior in
UT2004. Additionally, the bot’s accuracy is reduced with
respect to how much it and its target are moving, as well as
the distance between the two individuals, in order to make
the bot fallible in a human-like manner.

Another important change in how the Battle Con-
troller is used relates to use of the judging gun. UTˆ2-
2010’s Judging Controller made use of the Battle
Controller to define bot movement while attempting
to judge opponents. However, competition experience has
shown that the power and importance of judging makes
getting a successful judgement important enough that hu-
man players are less concerned with maneuvering to avoid
damage than usual. Therefore, UTˆ2’s Judging Con-
troller does not use the Battle Controller to
select from all available combat movement actions, but
instead simply chooses the Approach command every time.
This restriction makes the bot appear more focused when
attempting to judge an opponent.

IV. HUMAN TRACE REPLAY

UTˆ2-2010 made use of human traces purely for the
purpose of getting the bot unstuck whenever one of sev-
eral stuck triggers fired, thus indicating that navigation had
somehow failed. The current version of the bot was modified
in several ways: (1) the Human Retrace Controller
was improved to play back long traces more reliably, (2)
the bot was supplied with improved and filtered databases
of recorded human behavior for each level to be used in
the competition, (3) the UNSTUCK module now combines
human trace behavior with scripted actions, and (4) the new
RETRACE module uses prolonged human trace replay in
order to explore levels in the absence of other goals.

A. Storing Human Data

There is a separate database of recorded human traces cor-
responding to each level in UT2004 (Fig. 2). Each database
consists of sequences of agent locations stored along with the
game time that the player was at that position. The sequence
of locations for one player ordered by time represents a trace
of how a human player moved through a given level.

In order to make the sequences stored in the database
smooth and useful for getting unstuck and wandering around
the levels, the data recorded from the human players is
filtered. Sequences are broken up into separate subsequences
if they are broken up by death, or by space or time disconti-
nuities. The threshold values for deciding these were deter-
mined experimentally and held fixed during competition and
evaluation. There is a trade-off between the average length of
sequences in the database and their continuity, and sequences
that were too short were removed from the database after it
was broken up into appropriate subsequences.

However, in order to ensure that this filtering process
would produce usable data, traces were collected in a
synthetic manner: Individual players ran around levels by
themselves with no enemies, with the purpose of collecting
items while exploring the level as much as possible. Such



(a) Two Human Traces (b) Navigation Graph (c) Trace-Navpoint Mapping

Fig. 2: Human trace data for DM-Antalus. The human trace data used for the UT2004 level DM-Antalus are plotted in
three dimensions, X, Y and Z. The original pose traces (2a) are overlayed onto the navigation graph (2b) and indexed by
the nearest vertex/navpoint for faster retrieval (2c). In Fig. 2b, the relative size and shading of the squares at the vertices of
the navigation graph indicates the number of points in the database in each vertex’ neighborhood - a measure of coverage
used during quality control. In Fig. 2c (color figure), the pose data are colored according to the nearest navpoint to show
the Voronoi region indexing scheme used during retrieval.

synthetic data is free of the erratic movement which is
characteristic of combat, but which would look strange if
replayed without an opponent.

The locations within the traces are indexed by their nearest
navpoint within the level, as in Voronoi cells [9, 29]. Each
such set of locations is then stored in a KD-tree data structure
to support fast (O(log(n))) nearest neighbor queries [4].
This indexing scheme speeds up the operation of finding the
nearest point of the nearest trace when needed.

B. Replaying Human Traces
Whenever a trace is retrieved for replay, the bot picks

points along the trace starting from near its current location,
and uses the Move Along Points action to move di-
rectly to the first point while planning ahead to the next point
in the sequence. The points on the selected path are picked
according to an estimate of the distance that the bot covers
during the course of a single decision frame, and this estimate
is continuously updated as the bot plays back human traces.
Such adaptive planning results in smoother, more human-
like movement than simply moving through the sequence of
points from a given trace.

The quality of playback of human traces depends on
a number of factors, including level geometry (open vs.
enclosed spaces, number of turns, slopes), the nature of the
human data (number and frequency of jumps and stops,
autonomous movement vs. movement due to combat), and
the fidelity of the estimated distance covered used in trace
playback. It is therefore important to control the quality of
the resulting behavior. Such quality control was achieved
by manually observing the retrace behavior in isolation,
by collecting and analyzing statistics about the actions and
conditions occurring during repeated runs, and by visualizing
the underlying data in meaningful ways.

C. Getting Unstuck
The UTˆ2-2010 bot made use of human traces exclu-

sively for getting unstuck. The current version of the bot

still uses human traces for this purpose, but also uses scripted
actions for getting unstuck under specific circumstances. The
scripted responses to getting stuck are to Move Forward
if standing still, Move Away from walls and agents with
which the bot is colliding, and to Dodge away from obsta-
cles if collisions are occurring with high frequency. Dodge
is also used to escape when the bot gets stuck under moving
elevators. Elevators can be particularly confusing because
they contain moving navpoints that may not be where the
bot expects them to be.

These scripted responses usually work well in these situ-
ations, but if these responses fail repeatedly, or if the bot is
near the same navpoint for too long, or if the bot finds itself
significantly removed from any navpoint in the navigation
graph, then the bot will try using human traces to get unstuck.

If there is no reasonably close human trace available,
or if the human traces have repeatedly failed to get the
bot unstuck, then the bot resorts to random unstuck ac-
tions, which include Move Forward, Move Away From,
Dodge, and Go To Item.

D. Prolonged Human Retrace
In addition to using human traces to get unstuck, the

new control module RETRACE is entirely based on the
prolonged playback of human traces, in order to achieve
smooth, human-like exploration of the level. Playing back
human traces via the RETRACE module results in smoother
movement than the lower priority, A*-based PATH module,
which is a slightly improved version of the path navigation
module used by UTˆ2-2010. The human data used by
RETRACE plays back smoothly because it was created in
a synthetic manner, as explained in section IV-A.

E. Measuring Contribution of Human Traces
In order to measure the contribution of the two kinds

of human trace playback to the overall quality of the bot’s
behavior, both qualitative and quantitative observations of the
bot were performed under four different conditions:
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Fig. 3: Average number of frames stuck by condition (color).
An average of 10 runs with their standard error bars is shown.
Using human traces for exploration, to get unstuck, or for
both allows the bot to remain stuck for fewer frames and
looks more human-like upon observation.

1) No retrace: bot uses no human traces at all.
2) Unstuck: bot uses traces only for getting unstuck.
3) Explore: bot uses traces only for exploring the level.
4) Both: bot uses traces both to explore and to get unstuck.
The results of the comparison in terms of the number

and kind of stuck conditions for a typical level are shown
in Fig. 3. The amount of time the bot spent stuck was
generally smallest when using human traces both for getting
unstuck and for exploring the level, and the behavior looked
qualitatively smoothest and most human-like when observing
the bot in this condition, supporting the final design decision
for the competition.

V. OBSERVING WHILE PLAYING

The RETRACE module is a new module that is primarily
used when the bot is not interacting with opponents, because
it cannot see them. In contrast, the OBSERVE module is a
new module that is used when the bot is not interacting with
opponents that it does see. The OBSERVE module models a
human’s tendency, within the context of the judging game, to
stand outside of the action and attempt to figure out whether
a given opponent is a human or a bot.

The need for an OBSERVE module was overlooked in
UTˆ2-2010 because 2010 was the first year that BotPrize
used the judging game rules. In a regular UT2004 match,
there is little reason to simply watch other players, because
there are no points to be gained from not engaging in combat.
One player might avoid another in order to get more health or
a better weapon, but staying near enough to an opponent to
watch without actually fighting makes little sense. In contrast,
the goal of making correct judgments in BotPrize makes time
spent observing worthwhile.

The Observing Controller of UTˆ2 works as fol-
lows: the OBSERVE module will take control if the bot sees
an opponent or opponents that it has not yet judged, and if
it does not perceive itself to be threatened by any of these
opponents. The rational behind this triggering mechanism

is that humans are only interested in observing individuals
they have not yet judged (a visual cue reminds humans
whether or not they have judged a given opponent), but
passive observing only makes sense if the observer is not
actively threatened. Once the bot feels threatened, it will
launch into combat. However, if the observed opponent(s)
continue to ignore the bot, its desire to judge the observed
opponent increases, until a threshold is passed that causes it
to commit to judging the observed opponent. This transition
is logical, since the purpose for observing is to gain enough
information to make a judgment.

The actual actions performed while observing are fairly
simple: The bot will stay still if it is close enough to observe
the action, and it will approach the observed player if it gets
too far away. Though reasonable, this set of actions is fairly
simple, and may be improved upon based on observations of
games between humans and UTˆ2.

VI. RELATED WORK

The approach presented in this paper combines a modular
architecture, multiobjective neuroevolution techniques and
the use of recorded human traces in order to create a human-
like bot for a commercial first-person shooter game. Several
relevant threads of existing literature demonstrate the power
of these individual approaches as well as the opportunity to
use and to study them further.

A. Bot Evolution

Other researchers have evolved bots in UT2004 and sim-
ilar first-person shooter games for the sake of maximizing
performance. Because these games are so complex, much
work has focused on learning some isolated component of
good behavior.

For example, Graham et al. evolved artificial neural net-
works for the task of pathfinding in the game Quake [10],
and Karpov et al. evolved similar pathfinding behavior in
the original Unreal Tournament [15]. Cuadrado and Saez
evolved dodging rules for a bot in UT2004 [7], and Westra
and Dignum evolved weapon and item selection behavior for
bots in Quake III Arena [30].

Other researchers have focused on evolving complete
agents for these challenging games. A common approach to
evolving a complete controller for such complex games is
to evolve separate component controllers and combine them.
This approach was taken by Zanetti and El Rhalibi, who
evolved components of a bot controller for Quake III Arena
to match target data collected from human experts [32].
Another approach to evolving a complete bot was taken by
van Hoorn et al., who evolved a master controller on top of
subcontrollers evolved for particular tasks in order to learn
the behavior for a bot in UT2004 [28].

These works have been reasonably successful in evolving
skilled bot behavior in UT2004 and similar games. However,
even when researchers have made use of human data to
evolve skilled behavior, the final evaluation has always been
in terms of raw performance. The interest in domain per-
formance makes such previous work fundamentally different



from the work presented in this paper, which is primarily
concerned with looking human rather than in performing
well. In fact, judges’ comments from previous competitions
have indicated that being too skilled in the domain of
UT2004 can result in a player being more likely to be judged
as a bot. The need to be skilled within the limits of human
performance is why UTˆ2 uses various filtering mechanisms
to constrain evolved combat behavior. Such constraints are a
departure from previous work, and are necessary to prevent
bots from becoming skilled at the expense of looking human.

B. Human Traces

The use of human player data recorded from games in
order to create realistic game characters is a promising
direction of research because it can be applied both to
games and to the wider field of autonomous agent behavior.
This approach is closely related to the concept of Imitation
Learning or Learning from Demonstration, especially when
expanded to generalize to unseen data [2, 3, 19].

In games, imitation of human traces has previously been
used to synthesize movements in the game Quake [26],
however this approach has not been evaluated in the frame-
work of a human-like bot competition. The use of trajectory
libraries was introduced for developing autonomous agent
control policies and for transfer learning [23, 24]. Predictive
models of player behavior learned from large databases of
human gameplay have been used for multi-agent opponent
modeling in the context of the first person shooter Half
Life 2 [13]. Imitation learning using supervised models of
human drivers was used in order to train agent drivers in the
TORCS racing simulator [6]. In robotics, imitation learning
approaches have been shown effective as well, for example
in task learning and programming robosoccer players in
simulation [1]. Statistical analysis of player trajectories was
used in order to detect game bots in the first person shooter
Quake [18]. Most recently, a competitor team, ICE, is
using an interface for creating custom recordings of human
behavior in the UT2004 [17].

While human behavior traces and learning from demon-
stration techniques are finding increasing use in both games
and robotics applications, the BotPrize competition offers a
unique opportunity to test such methods in creating human-
like behavior directly. The challenge of combining imitation
and demonstration methods with other types of policy design
methods remains to be met.

VII. FUTURE WORK

The changes made to UTˆ2 should improve its chances in
the upcoming BotPrize competition. However, there is still
work to be done, both to improve the methods used by UTˆ2
and to understand what it means for a bot to behave in a
human-like manner.

The ways in which human traces are currently used are
all dependent on having data from the particular level on
which the bot will be used. This is a major limitation for a
game like UT2004, which allows users to create their own
levels, none of which could be properly played by UTˆ2

without first collecting level-specific human data. Therefore,
an interesting direction for future research is to use human
data from some levels to train a controller that generalizes
to new levels. Supervised learning methods such as artificial
neural networks can be used to build generative models of
human behavior in games, mapping from a local, egocentric
representation of the player’s game state to possible future
actions. Such models could then be used for direct control as
described in this paper or in other ways, for example in order
to predict opponent behavior or to rank evolving policies
according to a computable “humanness” rating.

As stated above, the actions performed by the Observ-
ing Controller are fairly simple. It is currently unclear
what humans are actually doing when they observe other
players in the UT2004 judging game. Although comments
collected from judges in previous competitions have given
some data on what they are looking for in human-like
behavior, it is still not clear what information they are
gaining from each individual interaction with an opponent.
The demo files from BotPrize 20102 are full of judgments
that are difficult for an outside observer (as opposed to the
interacting observers that were judges in the competition)
to understand. Because the BotPrize competitions have been
more concerned with evaluating the humanness of bots than
understanding what makes behavior human-like or bot-like,
there has been little progress towards attaining the 50%
humanness rating required to win the major prize for the
competition. It would likely be very informative to run a
tournament in which judges are debriefed after each match,
and taken through a video of their play while being asked
what they were thinking while making each judgment. Such
a study could be a major step towards understanding what
separates the humans from the bots in UT2004.

VIII. CONCLUSION

Starting from the UTˆ2-2010 bot, an improved version
of UTˆ2 has been designed to compete in BotPrize 2011.
This version of the bot uses a new neural network to control
its combat behavior, evolved with a more streamlined set of
objectives in a more combat-intensive scenario against the
challenging native UT2004 bots. The bot also makes more
extensive use of human traces as part of the new RETRACE
module, which makes the bot explore the levels the way
humans do. The unstuck behavior of the bot still uses human
traces as well, but now also makes use of scripted routines
that are more applicable to particular situations. Finally,
the bot has a new control module dedicated to observing
opponents, which is an important human behavior in the
context of BotPrize’s judging game. All of these changes
should help UTˆ2 behave in a more human-like manner for
BotPrize 2011.
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